For the first time four-terminal perovskite-silicon PV tandem devices hit 30% efficiency

News27-09-2022

TNO, TU Eindhoven, imec/EnergyVille and TU Delft, partners in Solliance, joined forces to further push the conversion efficiency of tandem solar cells to beyond the limits of today’s commercial photovoltaic (PV) modules.

 

For the first time, four-terminal perovskite/silicon tandem devices pass the barrier of 30%. Such high efficiency enables more power per square meters and less cost per kWh. The result is presented during the 8th World Conference on Photovoltaic Energy Conversion (WCPEC-8) in Milan and has been achieved by combining the emerging perovskite solar cell with conventional silicon solar cell technologies. The perovskite cell that features transparent contacts and is part of the tandem stack has been independently certified.

Additionally, achieving high-power density will create more opportunities to integrate these solar cells into construction and building elements, so that more existing surface area can be covered with PV modules. Breaking the 30% barrier is therefore a big step in accelerating the energy transition and improving energy security by reducing the dependency on fossil fuels.

Onderaan een silicium zonnecel en bovenaan een perovskiet zonnecel met transparante contacten.
Bottom silicon solar cell and top perovskite solar cell with transparent contacts.

The best of both worlds

Tandem devices can reach higher efficiencies than single junction solar cells because of a better utilization of the solar spectrum. The currently emerging tandems combine commercial silicon technology for the bottom device with perovskite technology: the latter featuring highly efficient conversion of ultraviolet and visible light and excellent transparency to near infrared light. In four-terminal (4T) tandem devices the top and bottom cells operate independently of each other which makes it possible to apply different bottom cells in this kind of devices. Commercial PERC technology as well as premium technologies like heterojunction or TOPCon or thin-film technology such as CIGS can be implemented in a 4T tandem device with hardly any modifications to the solar cells. Furthermore, the four-terminal architecture makes it straight forward to implement bifacial tandems to further boost the energy yield.

Researchers from the Netherlands and Belgium have successfully improved the efficiency of the semi-transparent perovskite cells up to 19.7% with an area of 3×3 mm2 as certified at ESTI (Italy). “This type of solar cell features a highly transparent back contact that allows over 93% of the near infrared light to reach the bottom device. This performance was achieved by optimizing all layers of the semi-transparent perovskite solar cells using advanced optical and electrical simulations as a guide for the experimental work in the lab.” says Dr Mehrdad Najafi of TNO. “The silicon device is a 20×20-mm2 wide, heterojunction solar cell featuring optimized surface passivation, transparent conductive oxides and Cu-plated front contacts for state-of-the-art carrier extraction” says Yifeng Zhao PhD student at TU Delft, whose results have been recently peer-reviewed. The silicon device optically stacked under the perovskite contributes with 10.4% efficiency points to the total solar energy conversion.

Combined, 30.1% is the conversion efficiency of this non-area matched 4T tandem devices operating independently. This world’s best efficiency is measured according to generally accepted procedures.

Future of four terminal tandem PV modules

This is not all, combining this highly transparent perovskite cell with other silicon-based technologies such as back contact (metal wrap through and interdigitated back contact cells) and TOPCon solar cells has also delivered conversion efficiencies approaching 30%. This demonstrates the potential of highly transparent perovskite solar cells and their flexibility to be combined with already commercialized technologies.
These world best efficiencies obtained on a multitude of incumbent technologies is a further milestone towards industrial deployment.

“These impressive results confirm the high potential of perovskite technology to substantially boost the performance in such tandem configuration,” says Dr. Tom Aernouts, head of the imo-imomec Thin-Film PV Technology team, from their labs in EnergyVille. “Now, we will focus on scaling up this tandem to larger dimensions, which will become relevant for the PV industry. We’ve already demonstrated perovskite solar modules up to sizes of 35x35cm2, as well as 4T tandem modules of similar size. We hope to confirm industrial scalability of these results on short term.”

Tom Aernouts

R&D Manager Thin-Film PV at EnergyVille/imec

We use cookies or similar technologies (e.g. pixels or social media plug-ins) to optimise your user experience on our website, among other things. In addition, we wish to use analytical and marketing cookies to personalise your visit to our website, to send targeted advertisements to you, and to give us more insight into your use of our website.

Do you consent to our use of cookies for an optimal website experience, so that we can improve our website and surprise you with advertisements? Then confirm with ‘OK’.

Conversely, would you like to set specific preferences for different types of cookies? This can be done via our Cookie Policy. Would you like more information about our use of cookies or how to delete cookies? Please read our Cookie Policy.