

Closing Event

Hubs for Urban Mobility and renewable Energy

14 November 2024 @ Tour & Taxis (Brussels)

Agenda

12u00-13u00: Registration & Sandwich Lunch

- 13u00-13u05: Welcome (VITO / EnergyVille Carlo Mol Moderator): For more information on HUME project contact carlo.mol@vito.be
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

HUME: Hubs for Urban Mobility and renewable Energy

- ICON project (Interdisciplinair Coöperatief Onderzoek)
- Project duration: 01/09/2021 until 30/11/2024 (39 months)
- Project coordinator: Blue Corner (now Blink Charging Belgium)
- Project partners & Workpackages:

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

HUME

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

VLAIO flux 50

Clusters for Growth

HUME Closing Event

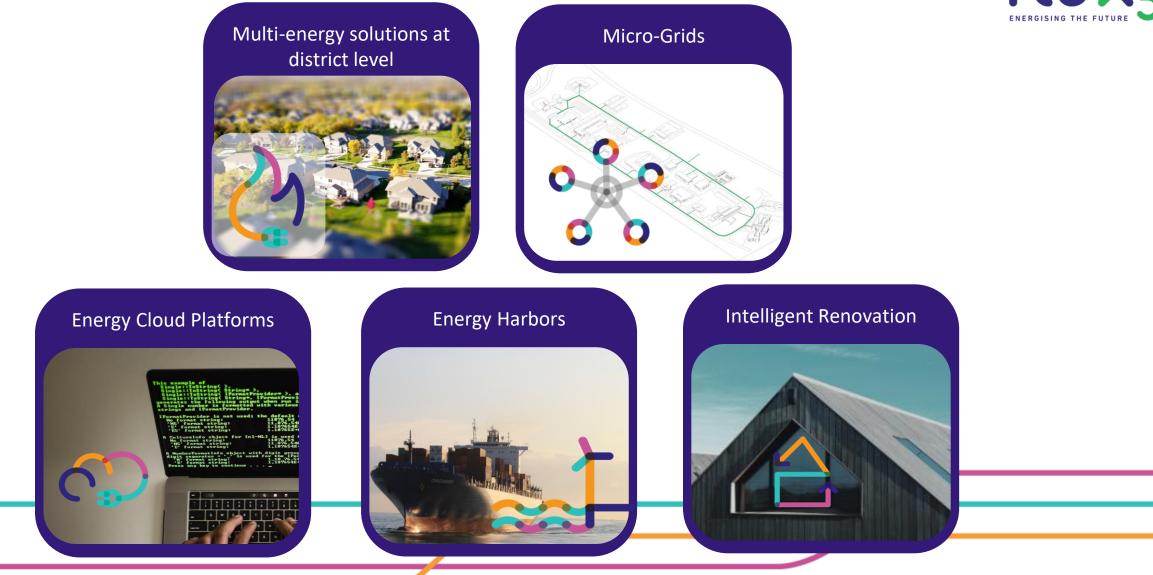
HUME within the Flux50 activities on collective energy solutions and flexibility

Patrick Devos

14/11/2024

Flux50 strategy 2030

Clusters for Growth


'Clean energy' as driver of economic development Accelerate the energy transition for Flemish companies. *Climate neutrality with maximum amount of Renewable Energy Sources* Flanders as 'Smart Energy Region'.

Neutral, strong connecting and accelerating role for Flux50

VLAIO flux50 Impact of cluster organization Flux50 Clusters for Growth Increasing competitiveness and resilience of companies **INSPIRE** Knowledge of **Strategic** technology and the Promoting competitiveness and economic growth market Catalyst in the innovation ecosystem, at the interfaces of the quadruple helix Serving the public interest **Operational** Forum for discussion on specific challenges faced by companies Energy ecosystem in Flanders Connecting various stakeholders, companies, sectors, clusters **Facilitator** ACCELERATE CONNECT Promoting knowledge development, knowledge sharing and Innovation **Ecosystem** knowledge retention Positioning Cooperation Stage **Events**

5 INNOVATOR ZONES

Flux50 focus groups

Replicable Renovation Renovation of buildings for Energy Efficiency. Installation RES Collective approach

Energy Communities (EC) Positive Energy Districts (PED)

Maximal local use of local Renewable Energy Sources (RES) E-mobility Flexibility by Storage, Peak shaving and

Price signals/dynamic pricing

Sustainable Thermal Energy

Heatpumps Thermal networks

Large-scale Energy Storage Security of supply

Large scale Storage (electrical and thermal) Flexibility Power to X Import of molecules

Energy Communities and Positive Energy Districts (EC & PED)

>E-mobility hub >Flexibility: decentralised energy system >Contribute to other sustainable goals Decreasing energy poverty Well-being and social cohesion

Flux50 focus groups

Renovation of buildings for Energy Efficiency. Installation RES Collective approach

Collective Energy solutions and flexibility

Maximal local use of Renewable Energy Sources (RES) Collective heating/cooling Collective E-mobility – Smart Charging Flexibility by Storage, Peak shaving and Price signals/dynamic pricing

Sustainable Thermal Energy Heatpumps Thermal networks

Large-scale Energy Storage Security of supply


Large scale Storage (electrical and thermal) Flexibility Power to X Import of molecules

Inspirere – Connect - Accelerate

Innovation becomes a success story: FOCUS | ROADMAPS | CO-CREATION

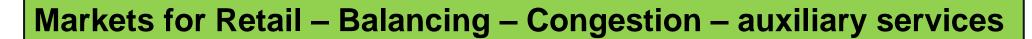
MEMORANDUM 2024: Energy transition, a higher acceleration.

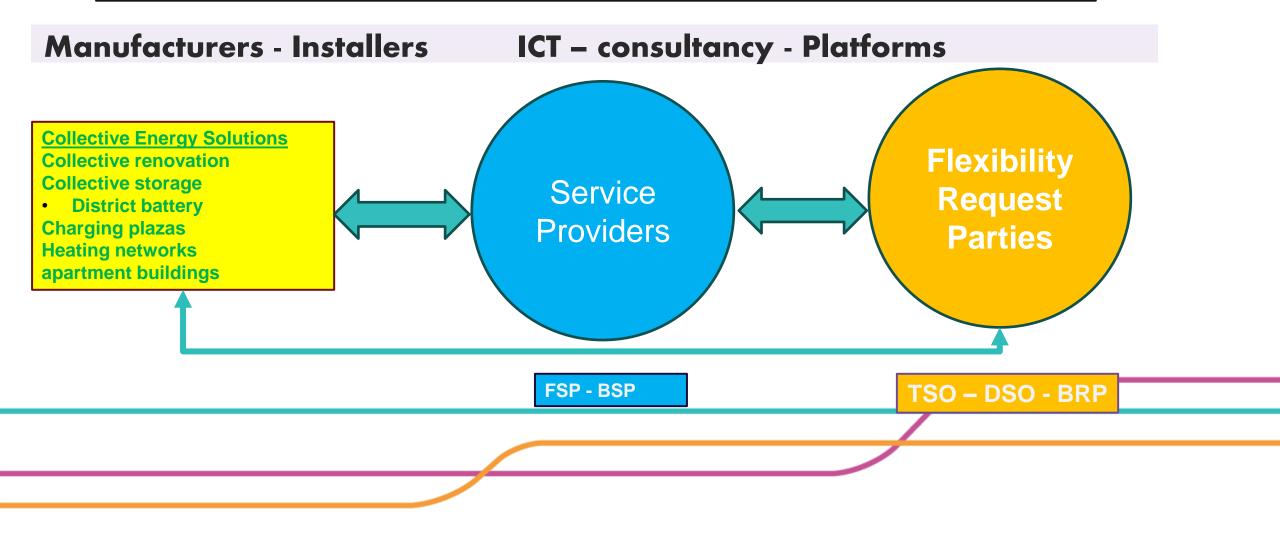
The General Logic:

- first focus on energy efficiency and circularity
- extensive electrification based on renewable energy sources

flixso

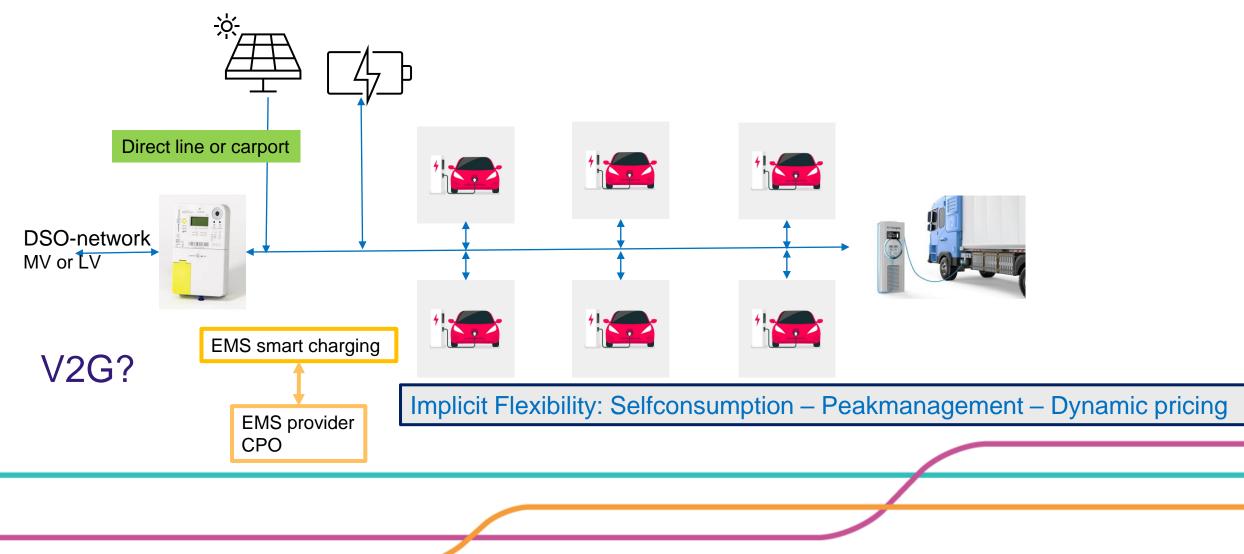
• promoting **renewable and low-carbon fuels**, including **hydrogen**, in sectors that are difficult to electrify or decarbonize.

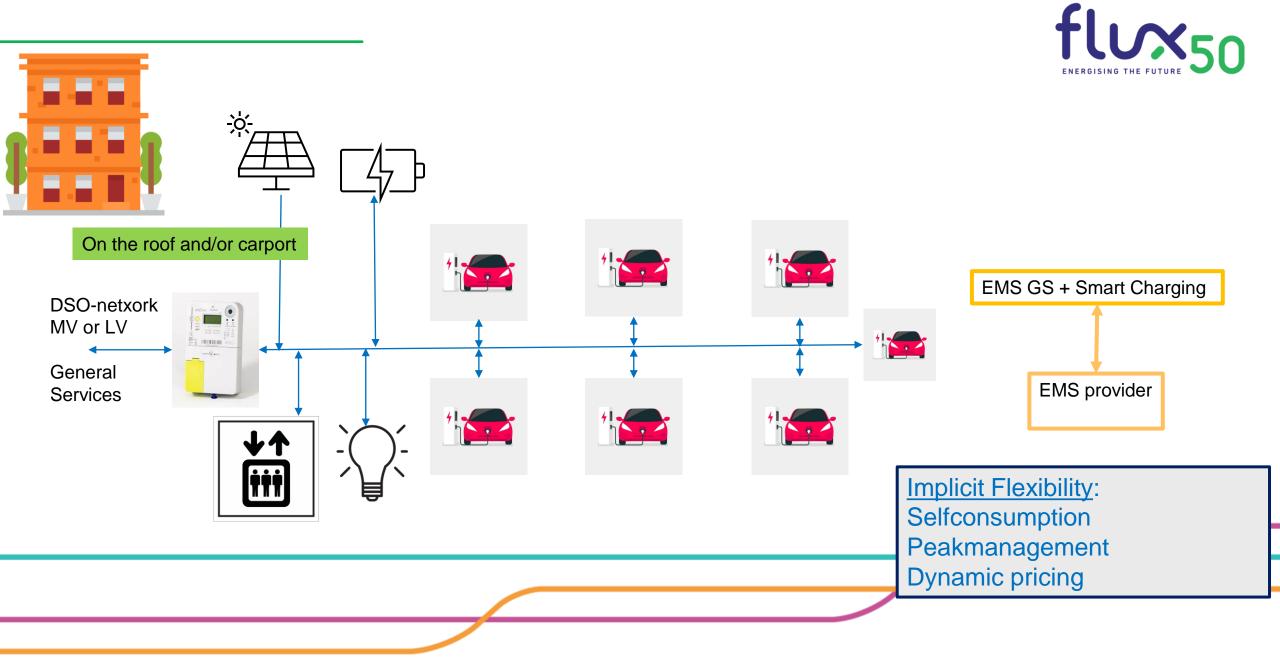

1.SYSTEM INTEGRATION Holistic Energy Transition Atrium – HET Atrium


2.RENOVATION Towards a large-scale breakthrough of an integrated renovation approach

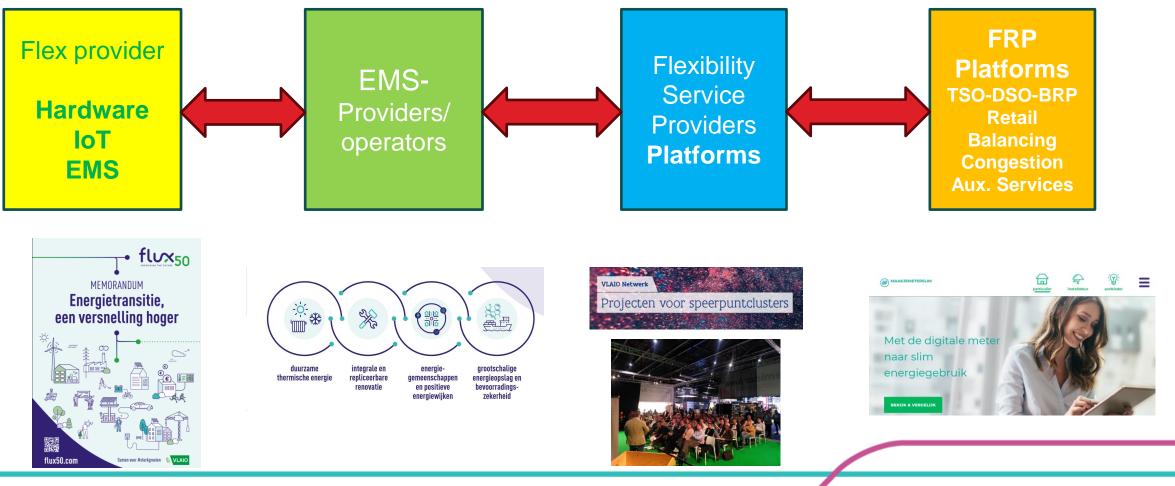
3.ENERGY COMMUNITIES AND ENERGY POSITIVE DISTRICTS Maximum inclusivity with collective and system solutions in energy communities and districts

Value Chain for Flexibility (explicit): Collective Energy Solutions





C.E.S. USE CASE Charging Plaza



C.E.S.USE CASE APARTEMENT BUILDING – SMARTCHARGING PLAZA

Flexibility value Chain: MATURITY

Clusters for Growth

Patrick Devos patrick.devos@flux50.com Tel +32 475 44 99 49

Koningsstraat 146 B-1000 Brussel info@flux50.com

Agenda

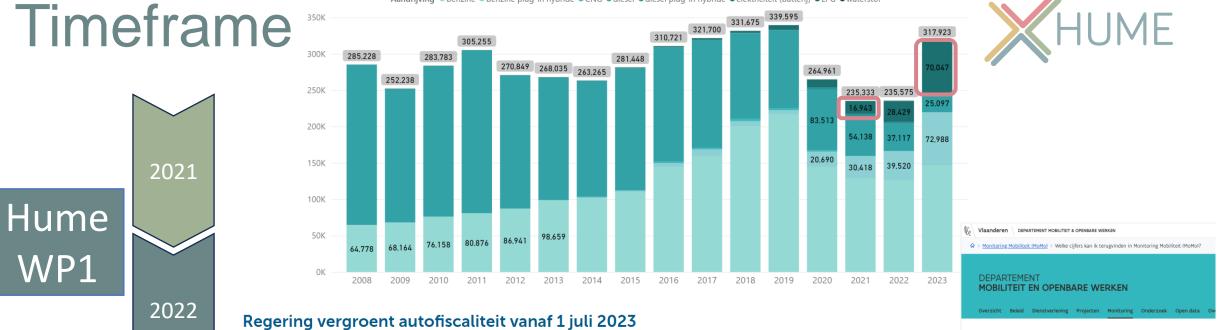
12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

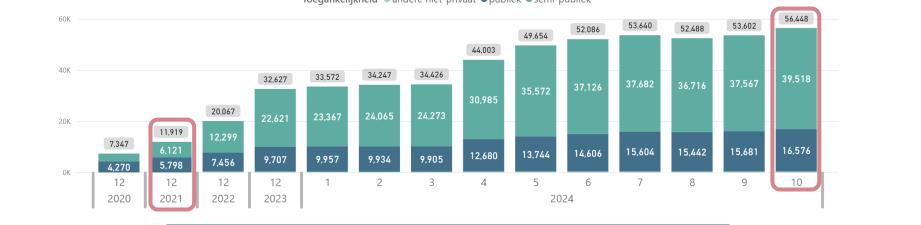
17h30-19h00: Reception & Networking


WP1 - Measurement Sites Challenges and Opportunities

Wim.Cardinaels@vito.be

14-11-2024 Hume closing event

Aandrijving 🔍 benzine 🔍 benzine plug-in hybride 🔍 CNG 🔍 diesel 🗨 diesel plug-in hybride 🔍 elektriciteit (batterij) 🔍 LPG 🗣 waterstof


Monitoring Mobiliteit (MoMo)

Welke cijfers kan ik terugvinden in Monitoring Mobiliteit (MoMo)?

Tegen 2026 zal de autofiscaliteit, weliswaar in verschillende fases, grondig wijzigen. Hoe zit dat dan met de aftrekbaarheid van uw huidige wagen? En waarmee moet u rekening houden indien u zich een nieuwe auto wilt aanschaffen? Toegankelijkheid • andere niet-privaat • publiek • semi-publiek

2023

2024

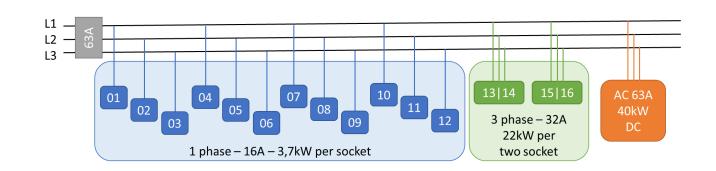
Details van de laatst beschikbare periode - Jaar: 2024 Maand: 10

User Needs – Theoretical Calculations XHUME

- Company cars drive on average 28 000km / year (2017)
 - Suppose 3 000km during holidays + 50 weeks of 500km
 - Since COVID increase in home-based work
- Charging mainly at the office => kWh/charging session
 - 12..25 kWh/100km: summer ⇔ winter
 - Charging sessions per week
 - 1*60kWh = 300..400km
 - 2*40kWh = 400..500km
 - Average Power
 - 3,7kW * 8h = 30kWh

days in the office	5	4	3	2	1	
500 km/week	100	125	167	250	500	(km/day)
15kwh /100km	15	19	25	38	75	(kWh/session)
25kWh/100km	25	31	42	63	125	(kWh/session)
300 km/week			100	150	300	(km/day)
15kwh /100km	0	0	15	23	45	(kWh/session)
25kWh/100km	0	0	25	38	75	(kWh/session)

Small Office Challenge



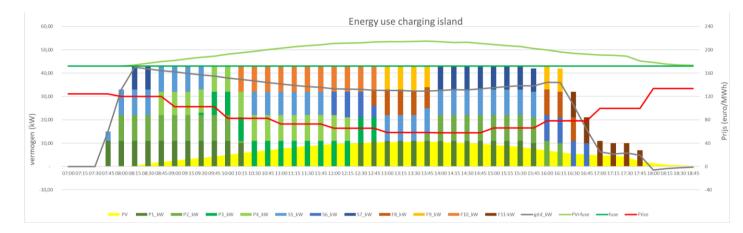
Grid Connection

- Low Voltage Grid Connection: 125A/400V = 85kVA
- 50% for computer, network, light, coffee, HVAC (gas boiler), ...
- 63A for charging equipment!
 - How many cars and charging stations can be served?

Challenges


- 1 phase ⇔ 3 phase?
- PV reliable?
- Battery?

Smart Charging ⇔Load Balancing XHUME


Load Balancing (embedded)

- Divide available power
- No idea of user needs
 - Departure time
 - Energy need
 - 20% less energy supply 20% less turnover some customers not satisfied

Smart Charging

- Respect user constraints
- Minimize energy cost

Measurement Sites - Input

Input for scenarios, data, analytics

- Constraints
- Users
- Opportunities
- Optimization objectives

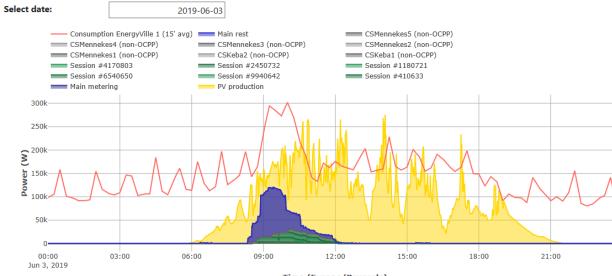
Diverse context

Measurement Sites - Overview

			I	
	Operational hours	Flexibility potential	Grid constraints kVA / parking spaces	Locations
Office	Work days 8:00 – 18:00	Average parking time > 8 hours	40/10=4 => 32kWh 400/100=4 => 32kWh 300/300=1 => 8kWh	 Thor Park, Genk EnergyVille, Genk Motstraat, Mechelen Octa+, Vilvoorde
Retail	All days (Sunday?) 9:00 – 19:00	Average parking time	Multiple grid connections 250+6*170+110 280 parking spaces = +/- 5	Brixton, Zaventem
City	All days Day & Night	From several hours till several days	630/123=5	 Moorkensplein, Antwerpen
Mixed	All days Day & Night	Several hours	250/650=0,4 !	Tour & Taxis BrusselMultiobus Tienen

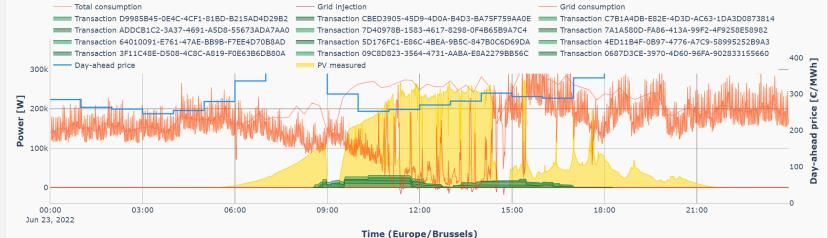
Analytics 2021/2022

Charged Energy ifo Parking Time and Average Power


parking time Sum of Energie (kWh)	average power		supplied	1																			
	0-1		2-3	3-4	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20	20-21	21-22	Grand Total
0-2	0		0	12	5		18	30		13	36	37	7		26		114	130	101	145	599	87	1.360
2-4	0		22	42	13		54		76	61	119	202	243	308	277	171	231	143	173	128	41		2.305
4-6	0		5 48	43	24	59	243	188	179	278	95	51											1.214
6-8	0	33	6 25	76	170	244	47	94															991
B-10	14	28	7 24	138	210	144	54																870
10-12	20	2	6 75	32	240	65																	457
12-14	4	15	1 290	675	170																		1.290
14-16	33	16	9 282	156																			641
16-18	43	9	8 501	114																			756
18-20	26	184	4 402																				612
20-22	9	144	4																				153
22-24	48	7	7																				125
24-26	6	18	6																				191
26-28		8	o																				80
28-30		10	6																				106
30-32	0																						0
32-34	15																						15
36-38	19	154	4																				173
38-40		4	5																				45
40-42	25																						25
44-46	18																						18
46-48	23																						23
48-50	24																						24
62-64	93																						93
66-68	9																						9
70-72	26																						26
72-74	45																						45
76-78	8																						8
90-92	0																						0
94-96	19																						19
98-100	51																						51
152-154	0																						0
Grand Total	576	2.04	8 1.669	1.288	833	512	416	312	255	353	250	290	250	308	303	171	346	273	274	273	640	87	11.726

Analytics 2021/2022

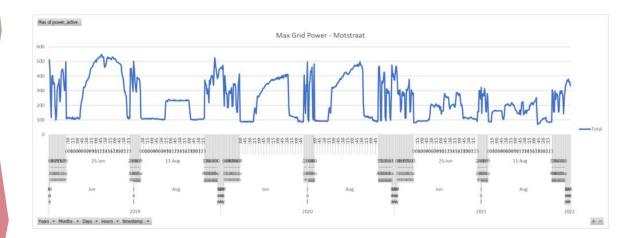
Daily power consumption overview


Note: The graph below presents a lot of data and takes about 30 seconds to load.

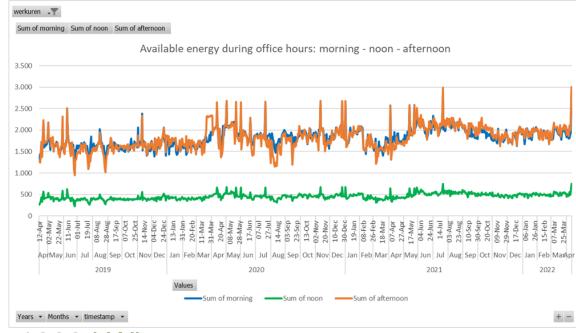
Time (Europe/Brussels)

After

Before



Analytics 2021/2022



Peak Power Profile

Energy Available for Charging

Impact of HVAC cooling systems on power profile

1000 kWh

- 50 cars 20kWh
- 30 cars 33kWh
- 20 cars 50kWh

More details will follow in the upcoming presentations

Charging ahead: Inzichten in het gedrag en de voorkeuren van EV-bestuurders (VITO - Guillermo Borragán)

Nieuwe inzichten in service- en bedrijfsmodellen voor EV-laden (Blink Charging – Thais Lopez & MOVE – Jasmien Vanvooren)

Tour & Taxis (Brussel) (Nextensa – Tim Van Dorpe)

EnergyVille1 (Genk) (VITO – Dominic Ectors)

Multiobus (Tienen) (Multiobus – Peter Vicca)

Thank you

Wim Cardinaels, VITO/EnergyVille

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

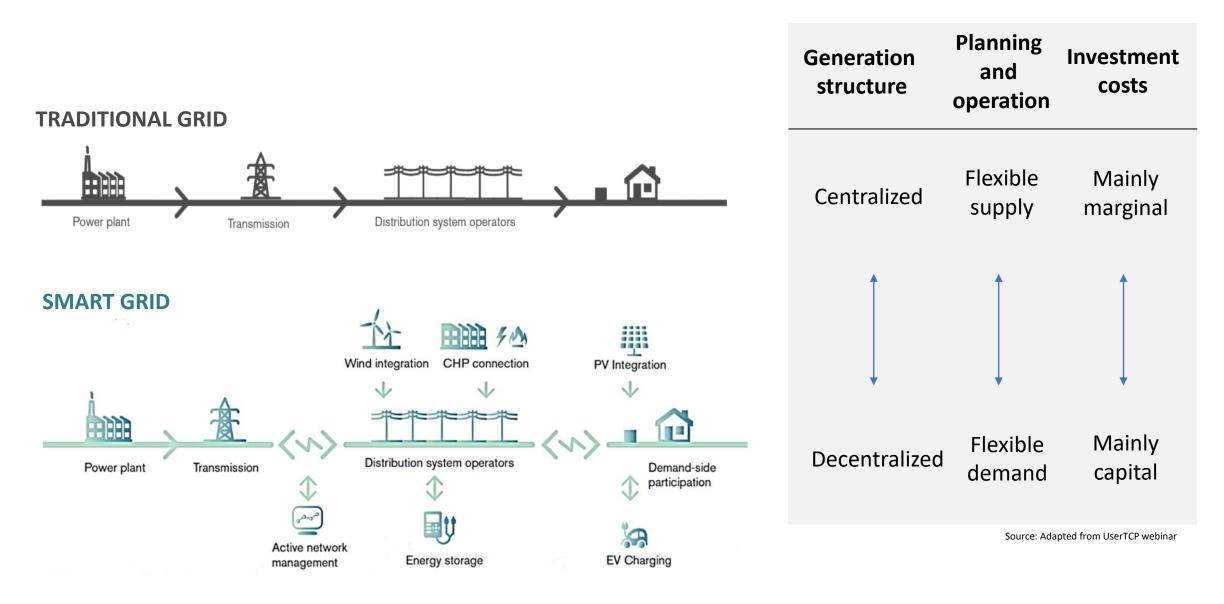
17h30-19h00: Reception & Networking

Charging ahead: Insights into EV driver behaviour and preferences

14 November 2024

Guillermo Borragán, VITO/EnergyVille (POLARIS)

WHAT DOES THIS PICTURE MAKE YOU THINK OF?



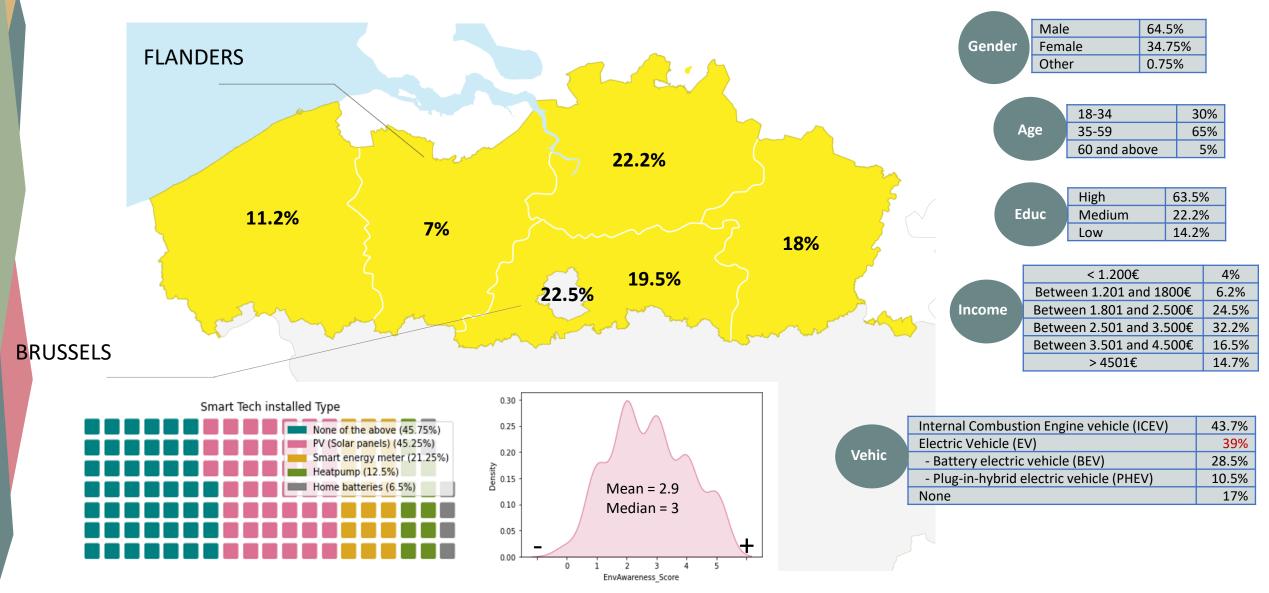
FROM CENTRALISED TO DECENTRALISED GRIDS

CONTEXT

EV DEPLOYMENT COMES WITH CHALLENGES

RESEARCH OBJECTIVES

- New policies and grid models will accelerate the sales of electric vehicles in the next years
- Proving sufficient collective parking and charging infrastructure will become a challenge
- This is especially important for urban areas and charging at workplace



MAIN OBJECTIVES OF THE USER SURVEY

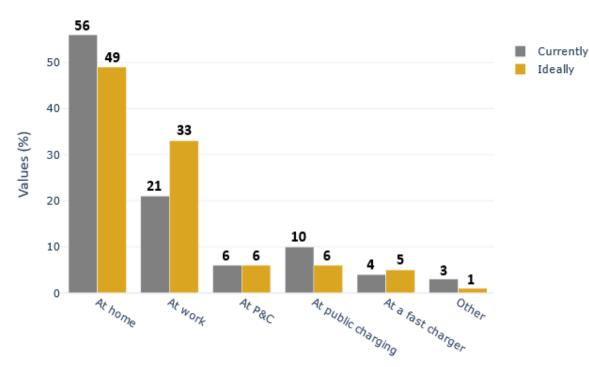
- 1) EV driver rationale in Belgium
- 2) Determine parking and charging preferences
- 3) Importance of boundary conditions: Barriers & Drivers
- 4) Facilitate the integration of renewables in the charging
- 5) Bring in information to define future BM: Identify user-profiles
- 6) Adoption predictive model

DEMOGRAPHICS (n = 450)

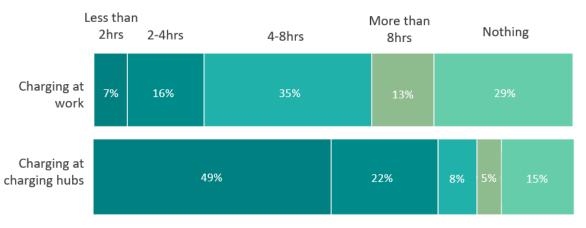
DESCRIPTIVES: Car usage and ownership

What are respondents using their car for?

Car ownership origin in Flanders split by car typology


RESULTS

1 Employer as a key facilitator for EV adoption

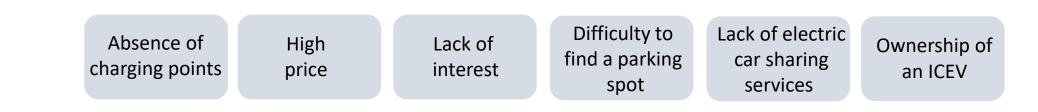

DESCRIPTIVES: Charging and parking preferences

Current vs. ideal charging location

Charging sessions duration at work and at charging hubs for EV drivers

Word cloud illustrating the issues reported by the respondents

charger app cable interoperability charging station parking vandalism


DESCRIPTIVES: Boundary conditions for EV charging by car typology

Experienced Barriers not to adopt EV (only for ICEV drivers)

3b

DESCRIPTIVES: Charging convenience and potential for PV integration

Time of Day (bin of 2 hrs)

4 Focus on EV charging at work

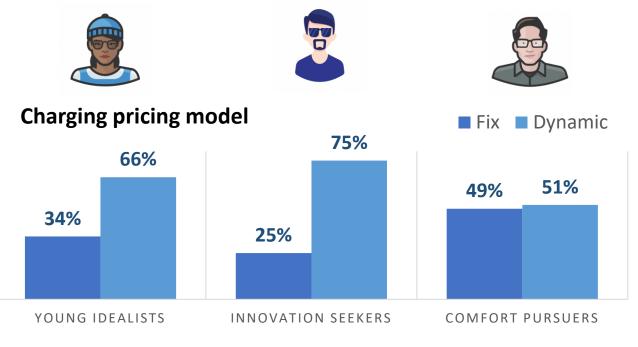
MODEL: Profiling by charging preferences behavior

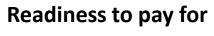
K-prototypes - dissimilarity coefficient

$$d(x_{i,q_{l}}) = y \sum_{s=1}^{p} \partial(x_{i,s}^{c} - q_{l,s}^{c}) + \sum_{s=p+1}^{m} \sqrt{(x_{i,s}^{N} - q_{l,s}^{N})^{2}},$$

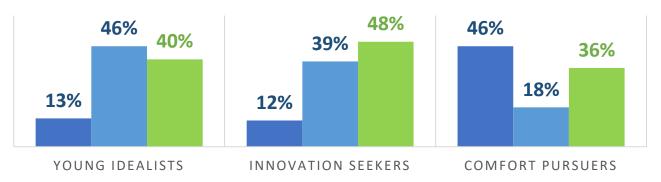
where $\partial(X_{i,s}, q_{l,s}) = \begin{cases} 0, X_{i,s} = q_{l,s} \\ 1, X_{i,s} \neq q_{l,s} \end{cases}$

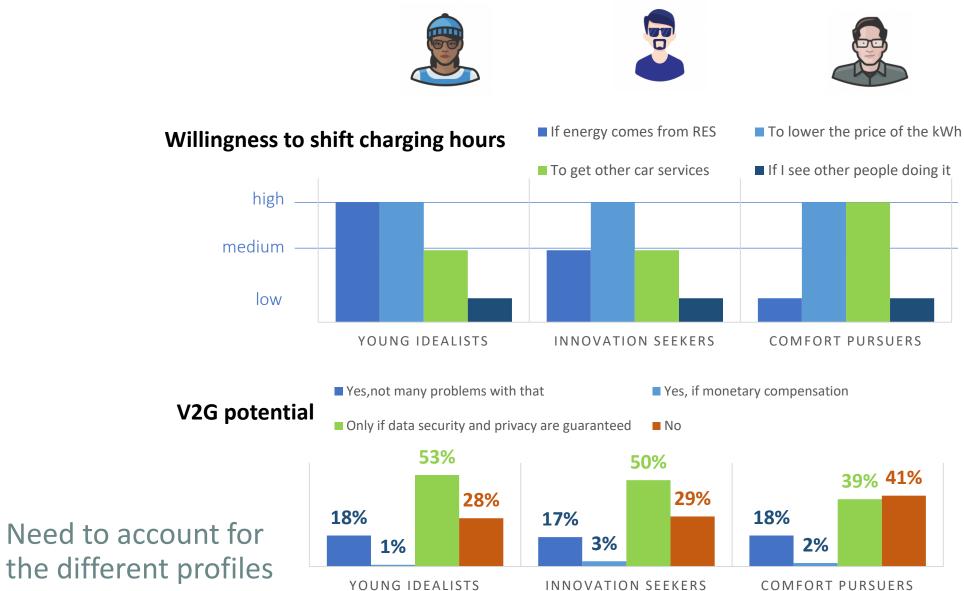
Source: Jia and Song, 2020


MODEL: Charging preferences by group



	Profile 1: Young idealists	Profile 2: Innovation seekers	Profile 3: Comfort pursuers		
	Sensitive to climate issues and familiar with	Straddling between Millennials and GenX.	Wary of quick technological advancements		
Demographics	technology. Idealist, critical spirit	Pragmatic and conformists	comfort seekers		
Respondents (n)	96	99	118		
Age (median)	36,5	43	44		
Gender (% of men)	49%	68%	70%		
Education (% high)	79%	63%	56%		
Income (% >2500€)	58%	68%	65%		
Housing type (% house)	54%	80%	71%		
Living area (% city)	65%	51%	49%		
	Car type:	EV ICE None			
	46%	47% 43%	43%		
	23%				
		9%	7%		
	YOUNG IDEALISTS	INNOVATION SEEKERS	COMFORT PURSUERS		

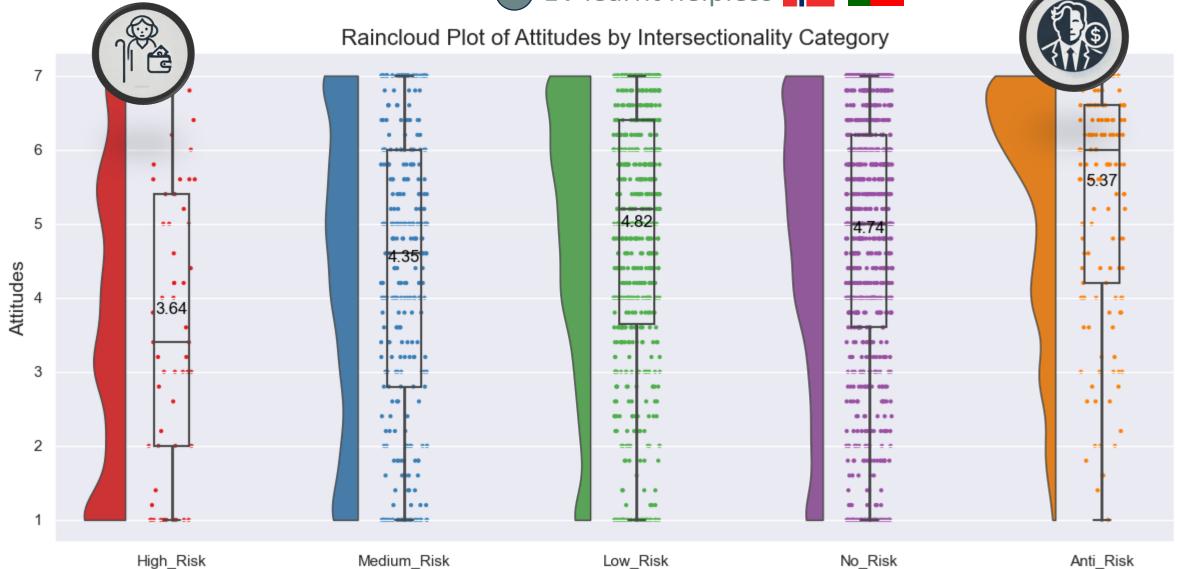

MODEL: Charge price and time flexibility



MODEL: Willingness to shift charging and V2G potential

5

CONTEXT OBJECTIVES RESULTS NEXT STEPS


MODEL: EV adoption

MODEL: EV adoption

Intersectionality Category

HUME

THANKS FOR YOUR ATTENTION

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

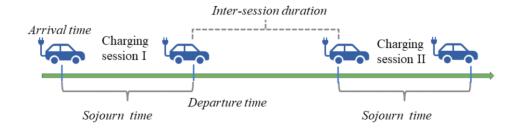
15h00-15h30: Coffee Break

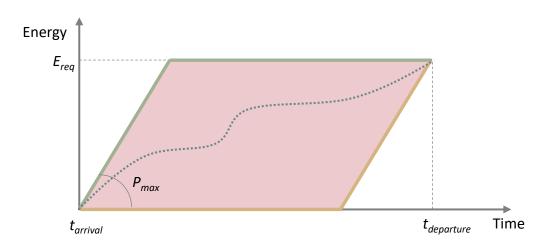
- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

Slim laden gebruiken om de energiestromen van parkeren en gebouwen te optimaliseren Deel 1 – KU Leuven/EnergyVille

Klaas Thoelen, Terry Zhang, Hossein Fani, Thijs Peirelinck, Geert Deconinck


Smart charging in HUME



- Exploiting the flexibility in time and power
- From uncontrolled to controlled charging profile

• Context:

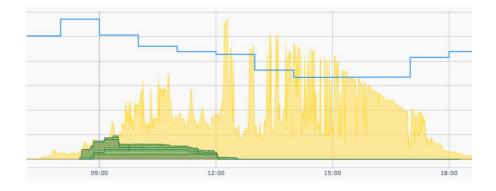
- Office building, parking lot, bus depot, ...
- Often limited capacity to the grid
- Possibly local PV and battery
- Multiple charging stations
- Various objectives and constraints
 - Input from HUME sites


Smart charging in HUME

- Exploiting the flexibility in time and power
- From uncontrolled to controlled charging profile

• Context:

- Office building, parking lot, bus depot, ...
- Often limited capacity to the grid
- Possibly local PV and battery
- Multiple charging stations
- Various objectives and constraints
 - Input from HUME sites


Smart charging in HUME



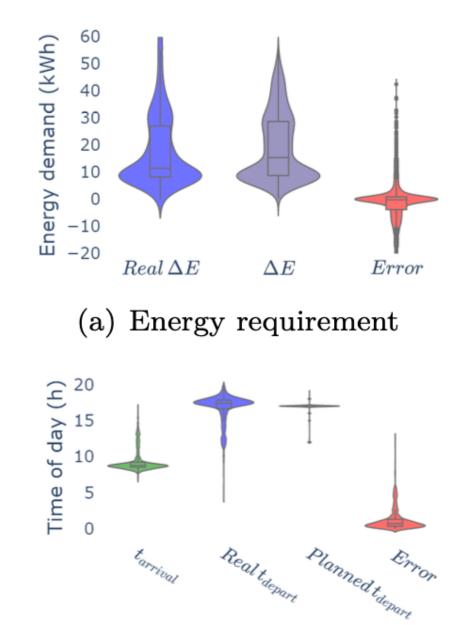
- Exploiting the flexibility in time and power
- From uncontrolled to controlled charging profile

• Context:

- Office building, parking lot, bus depot, ...
- Often limited capacity to the grid
- Possibly local PV and battery
- Multiple charging stations
- Various objectives and constraints
 - Input from HUME sites

A data-driven approach

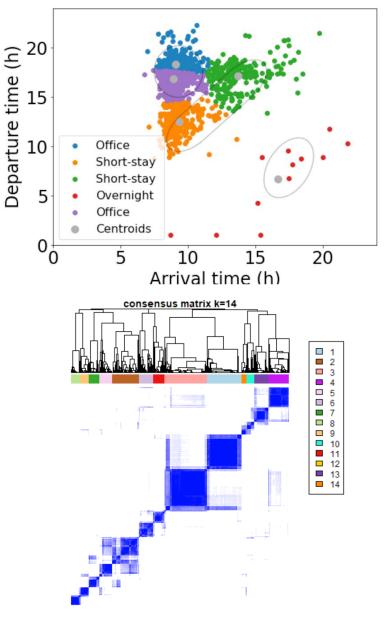
Selected contributions:


- 1. Data-driven estimation of user preferences
- 2. Data-driven charging scheduling: A reinforcement learning approach

Deliverable 2.2 - Report on the HUME optimization solution for smart charging in parking buildings.

Data-driven estimation of user preferences

- Smart charging requires data
 - Data about users, their EVs, and context
- Considerable uncertainty in data
 - Only estimations for: *departure time and energy*
 - No SoC available from EV (yet)
 - Users prefer plug-and-forget
 - Users often misestimate:
 - Difficult, range anxiety, uncertain plans, ...


→ Results in uncertainty on available flexibility

(b) Arrival and departure \lim_{60}

Data-driven estimation of user preferences

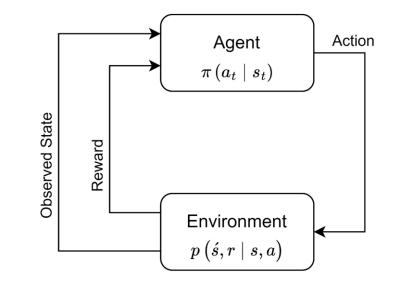
- 1. Classify charging sessions based on patterns in historical data
- Cluster sessions on arrival and departure time
 - Approach: K-means clustering
 - 3 session types: short-stay, office-hours, overnight
- General clustering of charging sessions
 - Additional parameters: energy requirement, maximum power
 - Approach: K-means based concensus clustering

(a) The color-coded heat maps K=14

Data-driven estimation of user preferences

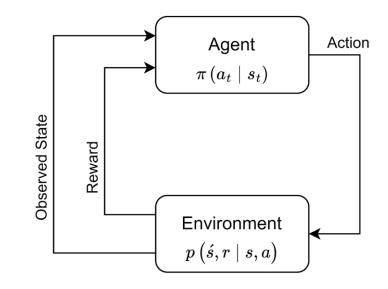
2. Include clusters in the data-driven energy estimation

- Methods:
 - Statistics: Bi-variate Gaussian Distribution (BGD)
 - Machine learning: Random Forests (RF), Extreme Gradient Boosting (XGB)
 - Neural networks: Mixture Density Networks (MDN)


Table 3.3: Benchmark on energy	requirement	estimation in	EnergyVille dataset
--------------------------------	-------------	---------------	---------------------

				00	-					<i>JU</i>	
			Without Clusters			K-means Clusters		KCC Clusters			
(kWh)	Baseline	KCC	\mathbf{RF}	XGB	MDN	\mathbf{RF}	\mathbf{XGB}	MDN	\mathbf{RF}	XGB	MDN
\mathbf{R}^2	0.59	0.60	0.60	0.60	0.42	0.65	0.62	0.61	0.64	0.61	0.64
MAE	5.54	5.70	5.52	5.56	5.26	5.079	5.38	4.42	5.11	5.38	4.09
MSE	81.17	78.19	77.79	77.69	72.66	68.74	75.03	61.75	69.46	75.22	54.21
%	-	3.67	4.16	4.28	10.48	15.31	7.56	23.93	14.43	7.33	33.21

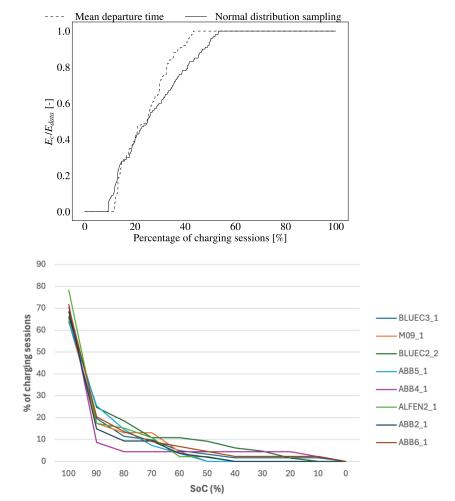
In simulations on EnergyVille data: Potential daily cost reduction between 6,6% and 14,7%


- Reinforcement learning = machine learning + optimal control
 - Which actions to take in an environment to optimize a reward?
 - Discrete-time stochastic control process
 - Executed periodically
 - Uncertainty on arrival and departure of Evs, available power, requested energy
 - Large number of possible actions
 - Data driven approach \rightarrow Machine Learning
 - Fitted Q-Iteration based on neural networks
 - Learn the Q-function = value of taking an action in a given state

• Environment:

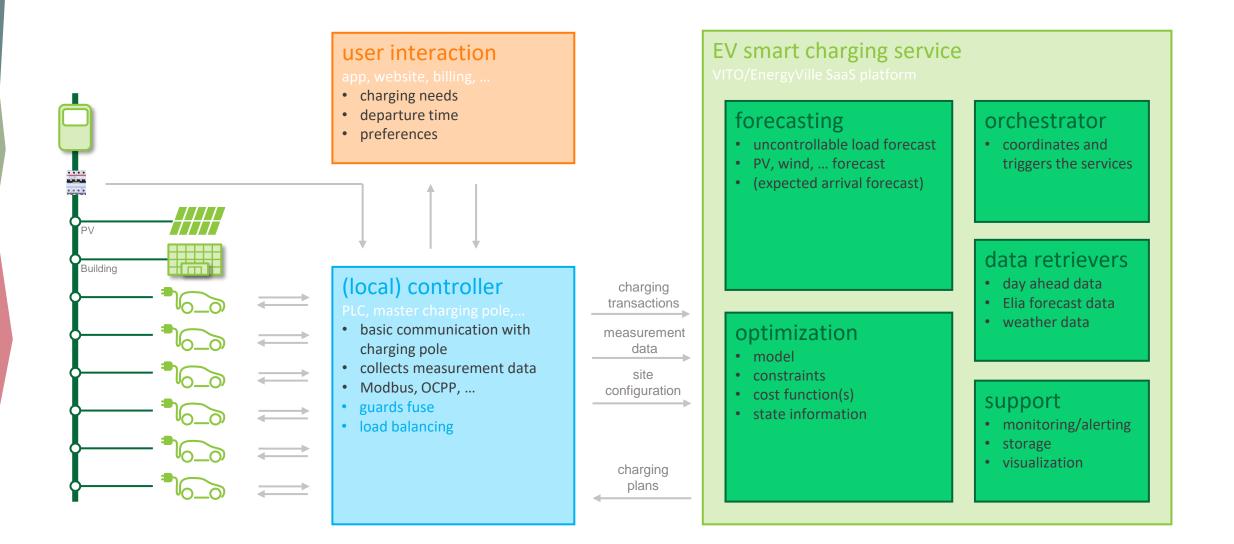
- Grid connection + PV installation
- Residual building load
- 8 charging sockets
- EV charging session data: start time, departure time, requested energy
- State:
 - $X = (SoC, \Delta T^{charge}, \Delta T^{depart}, t)$
 - SoC = energy charged
 - $\Delta \mathbf{T}^{charge}$ = time needed to fully charge
 - $\Delta \mathbf{T}^{depart}$ = time until departure
 - t = time step
- Action:
 - Per charging socket, charge or not charge, with P^{max} = 11kW
 - Every 15'
- Cost:
 - Cf. PV self-consumption and peak reduction
- Real-time controller (or back-up controller)
 - Overrule RL agent actions to make sure EVs are fully charged (when feasible)

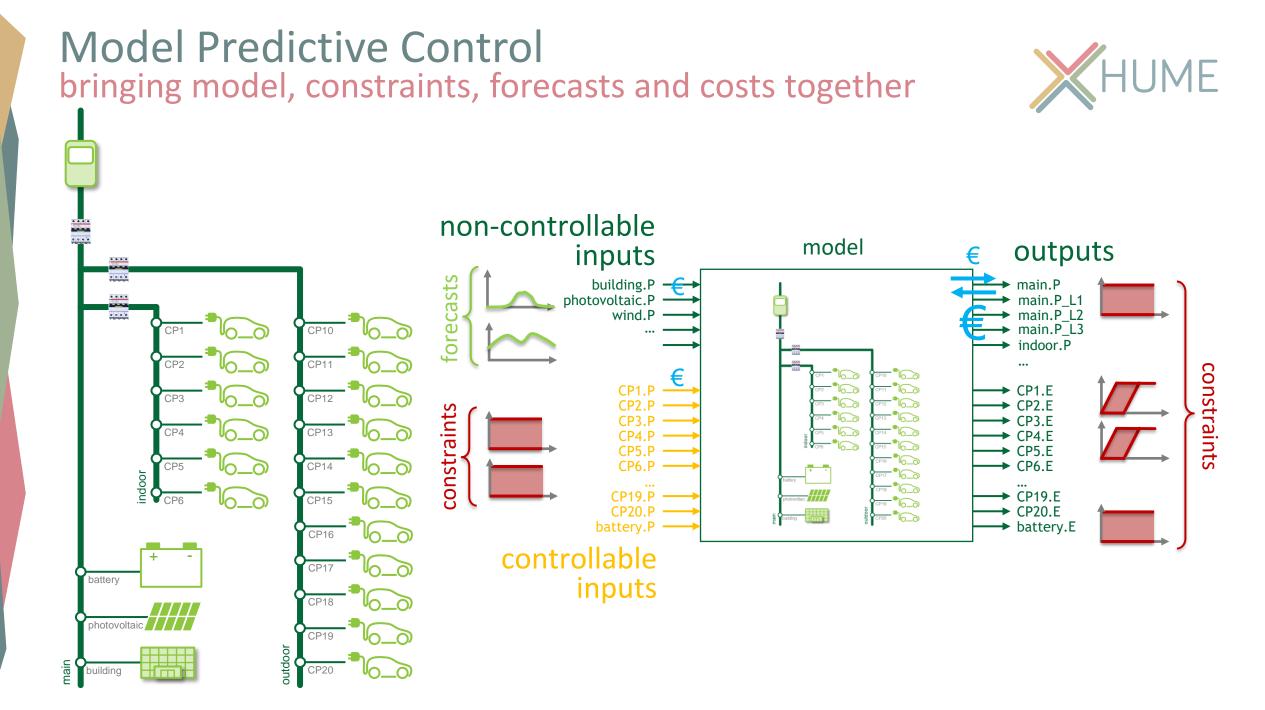
- Evaluation:
 - Peak reduction and PV self-consumption
 - For various departure time estimates
- Results:
 - Charging is moved to dip in power consumption and spike in solar production
 - Peak is reduced with ~7kW or ~4%
 - Self-consumption increased from 8% to ~25%
 - No clear difference between RL versions
 - But, good departure time estimate is needed to maximize user comfort


	Mean daily peak (kW)	Self-consumption rate
Uncontrolled charging	167.62	0.08
Real departure time	161.42	0.25
Mean departure time	160.19	0.29
Normal distribution sampling	159.6	0.28

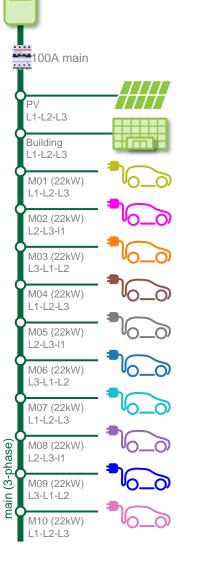
• Evaluation:

- Peak reduction and PV self-consumption
- For various departure time estimates
- Results:
 - Charging is moved to dip in power consumption and spike in solar production
 - Peak is reduced with ~7kW or ~4%
 - Self-consumption increased from 8% to ~25%
 - No clear difference between RL versions
 - But, good departure time estimate is needed to maximize user comfort

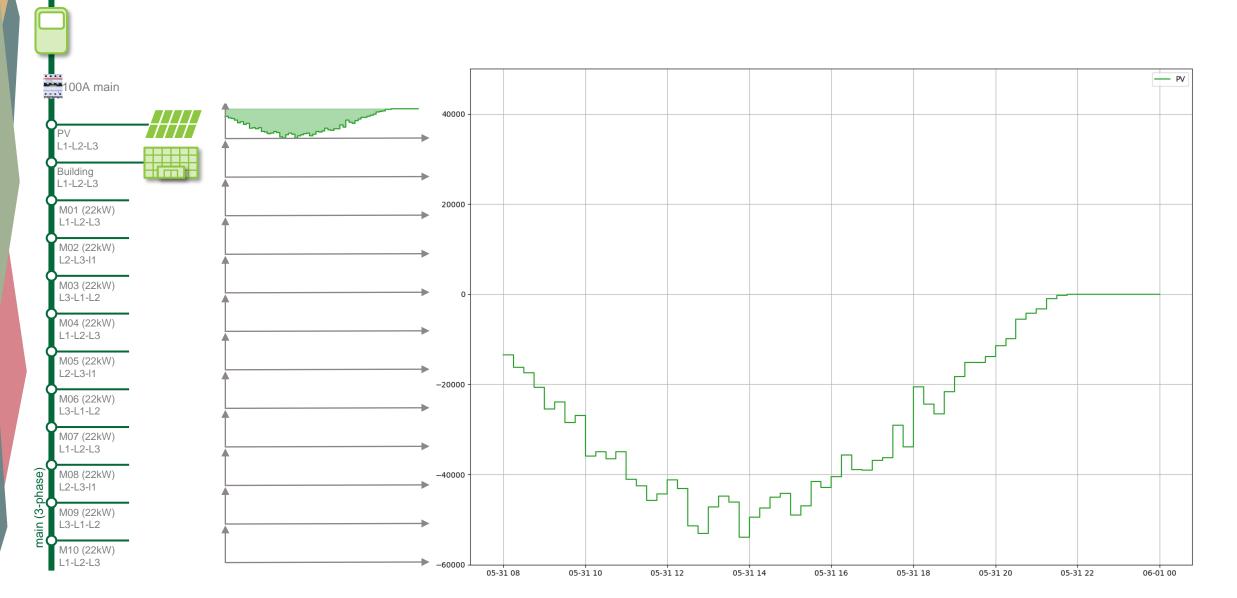

Using smart charging building energy flows Mixing model based and data driven methods(AI) in a Model Predictive Control (MPC) approach


Presented at the Hume end-event, 14-11-2024 *Jef Verbeeck*, Chris Hermans, Dominic Ectors, Milan Findura, Tom Cuypers

Charging infrastructure today and what we add to it

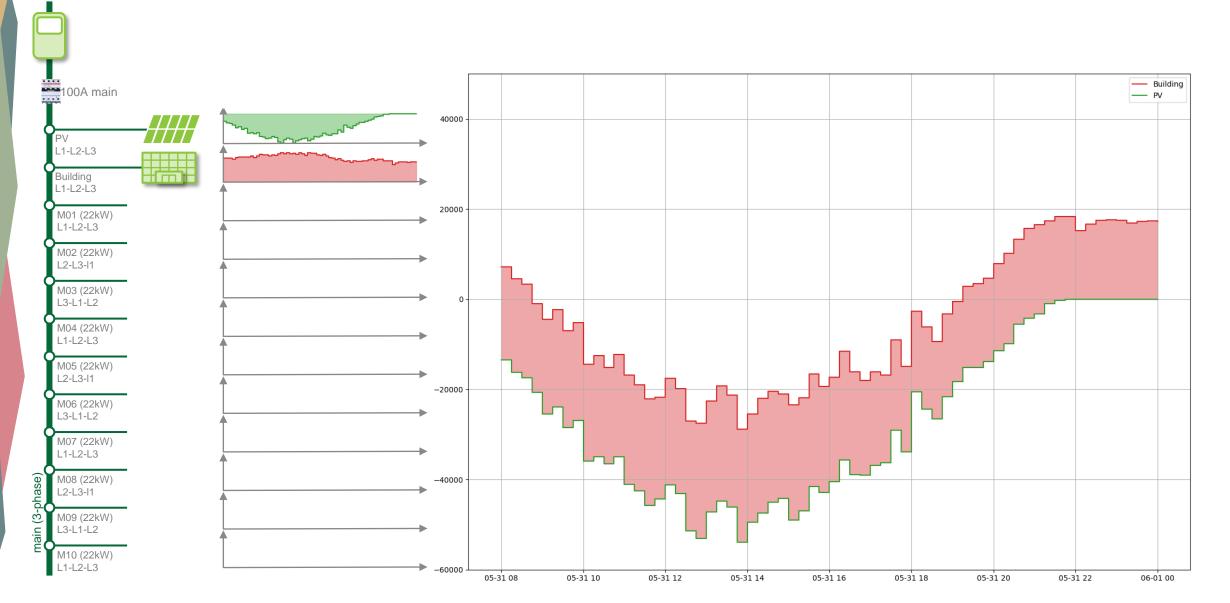


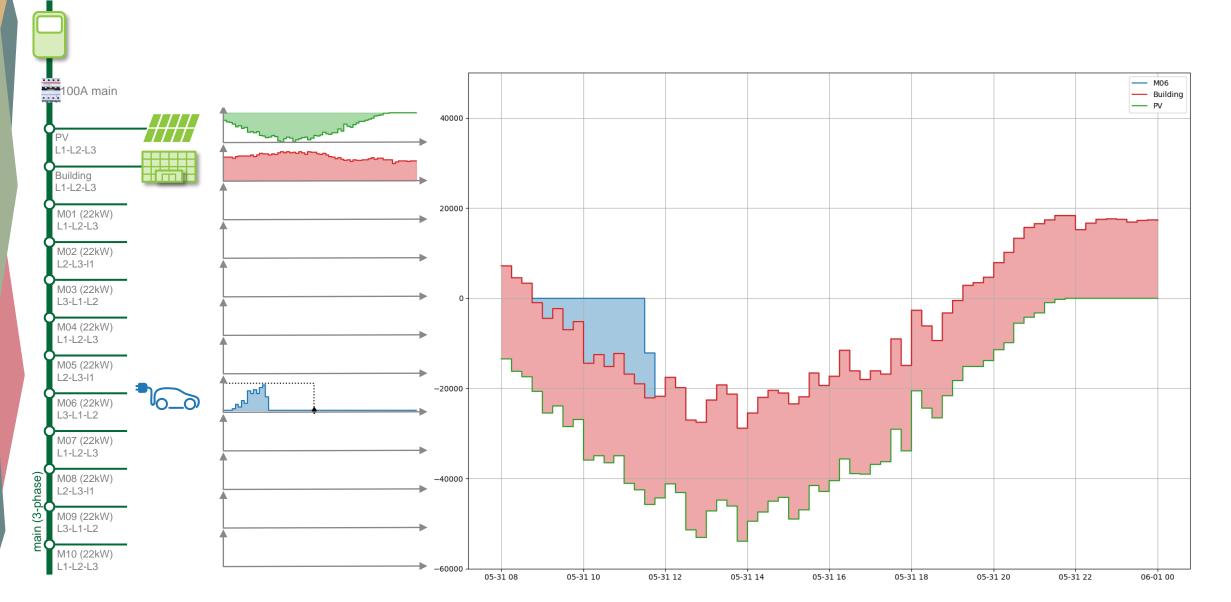
Example planning Configuration and optimization settings

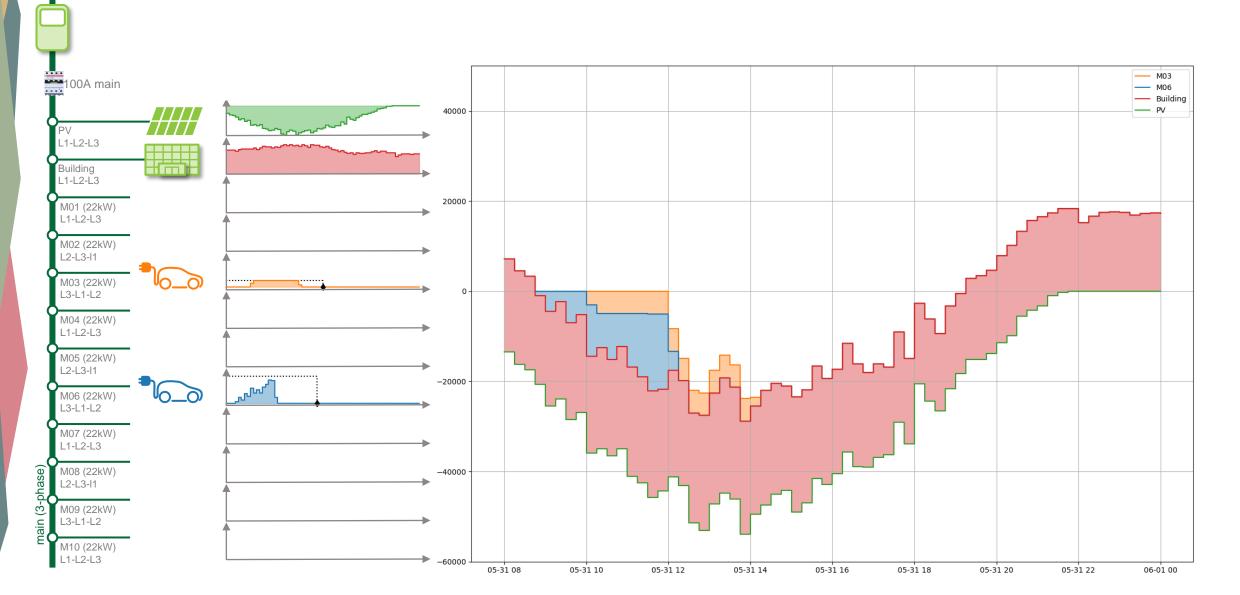


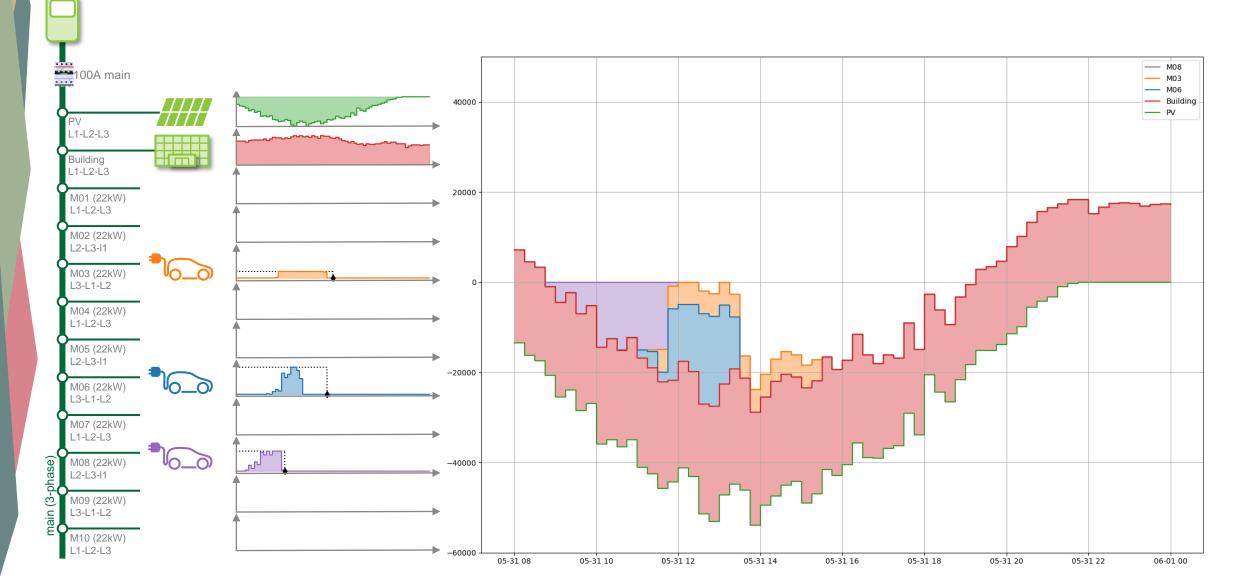
optimization settings:

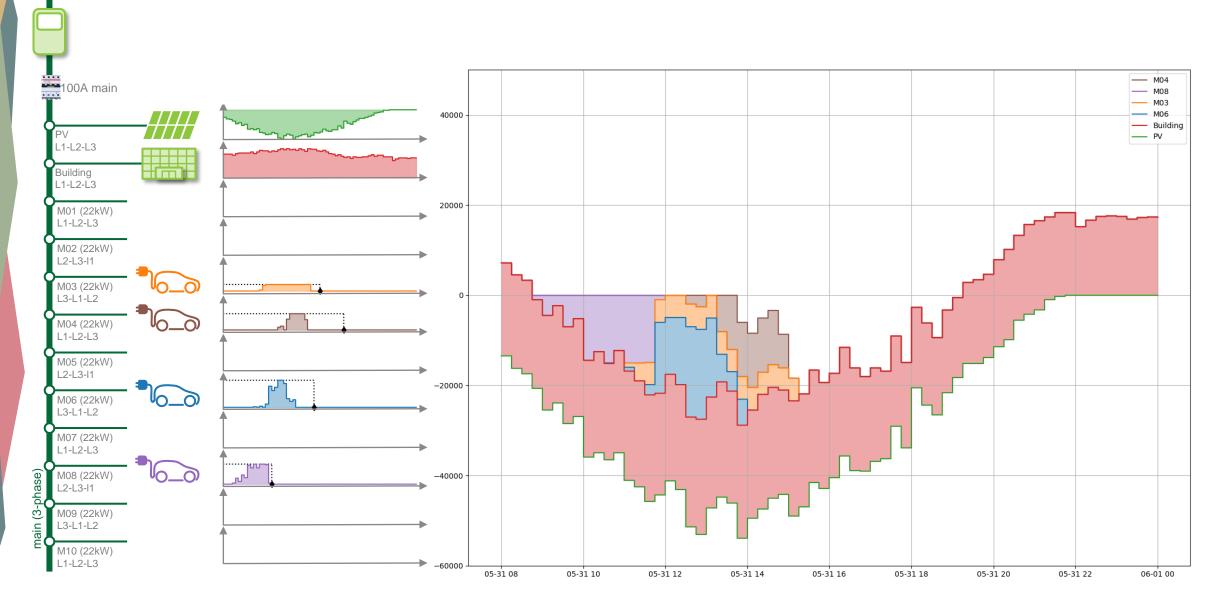
- Dynamic electricity offtake price (day-ahead market)
- Fixed (low) electricity injection price (0.04€/kWh)
- Peak price when offtake power exceeds 40kW (capacity tariff)
- In case there are multiple solutions possible:
 - Charge car as fast a s possible
 - Prioritize based on departure time of the car

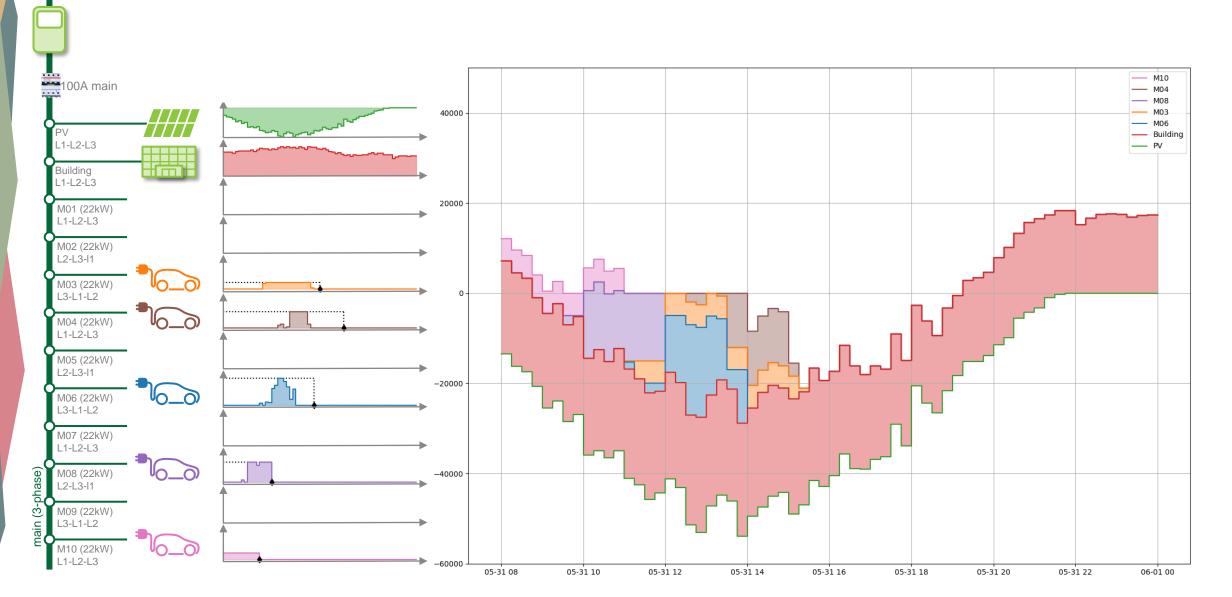

Example optimization Step 1: PV forecast

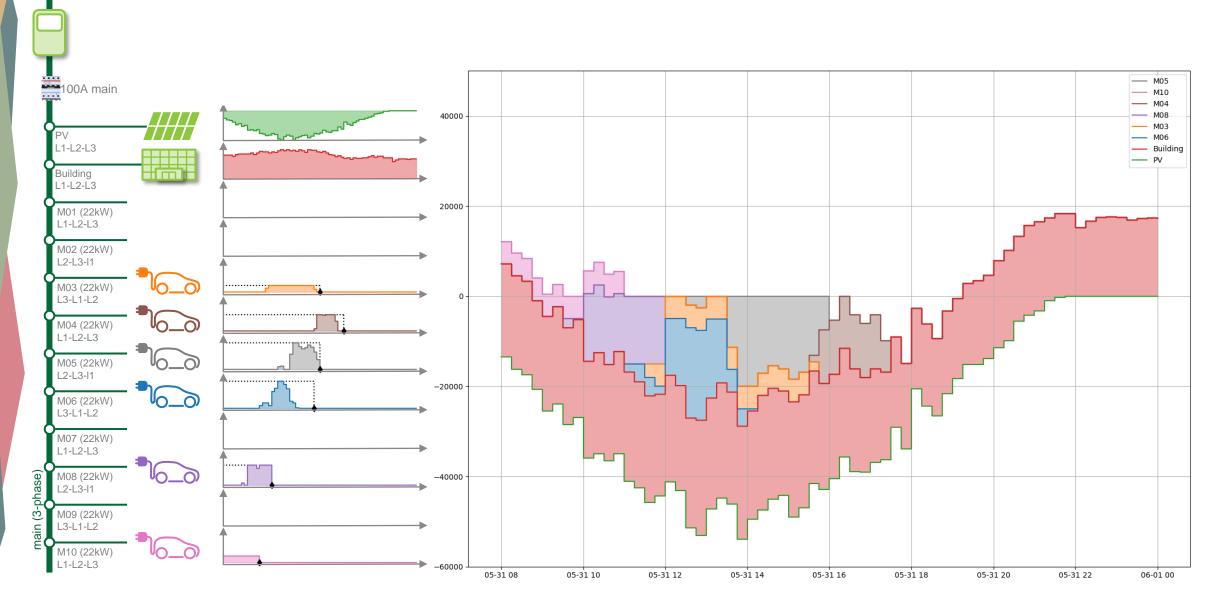

Example optimization Step 2: PV and building consumption forecast

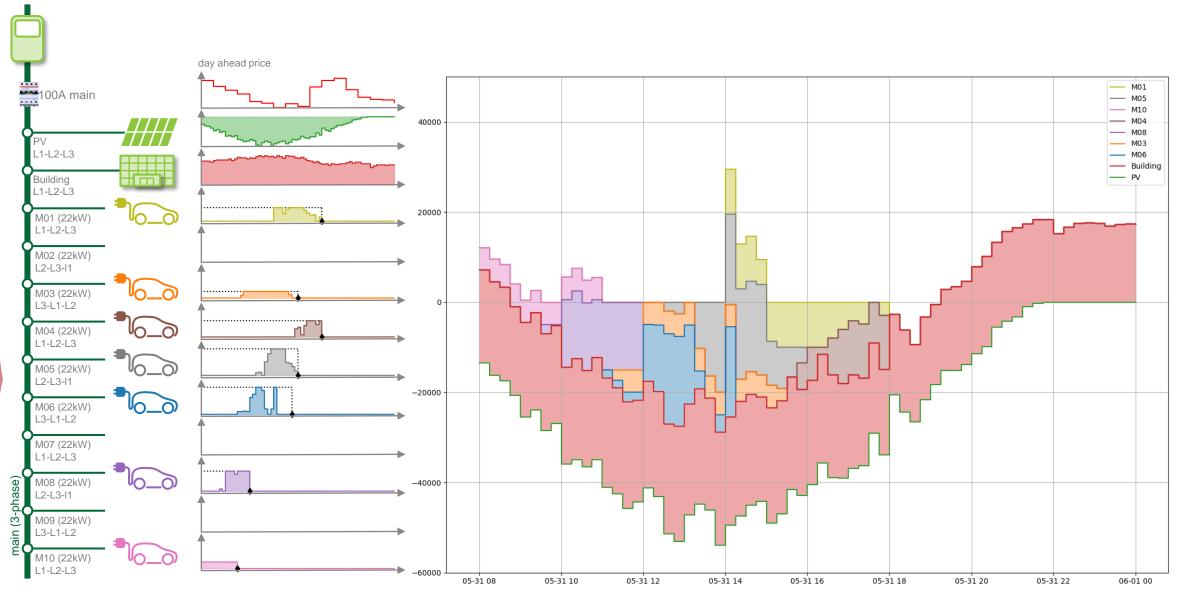

Example optimization Step 3: 1st car → ASAP on PV self consumption

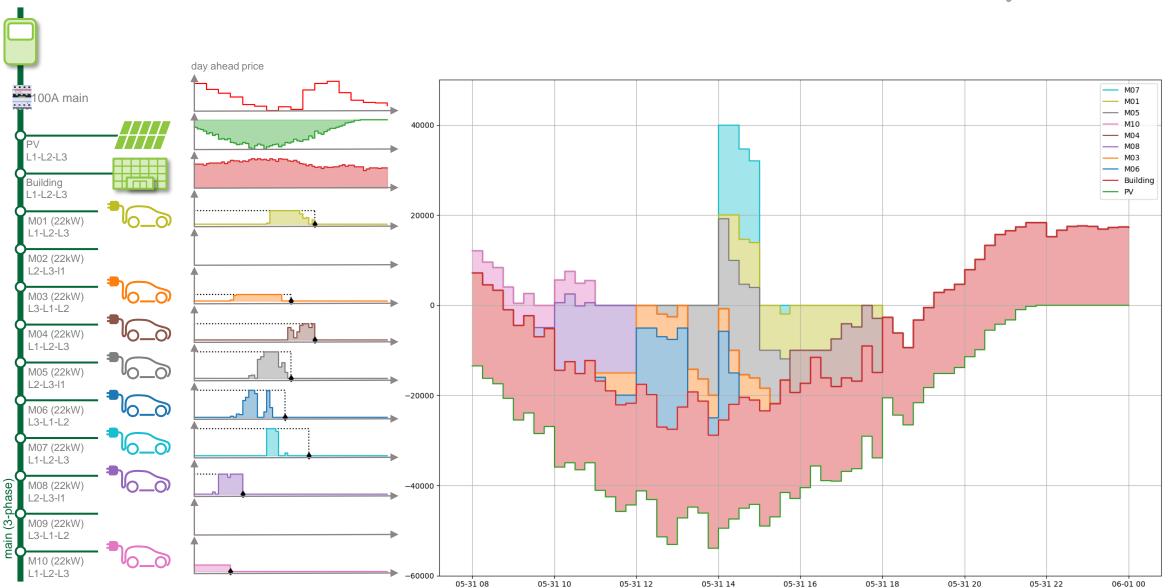

Example optimization Step 4: 2nd car → charge after car 1 on PV


Example optimization Step 5: 3^{rd} car \rightarrow shifts before other cars because early departure

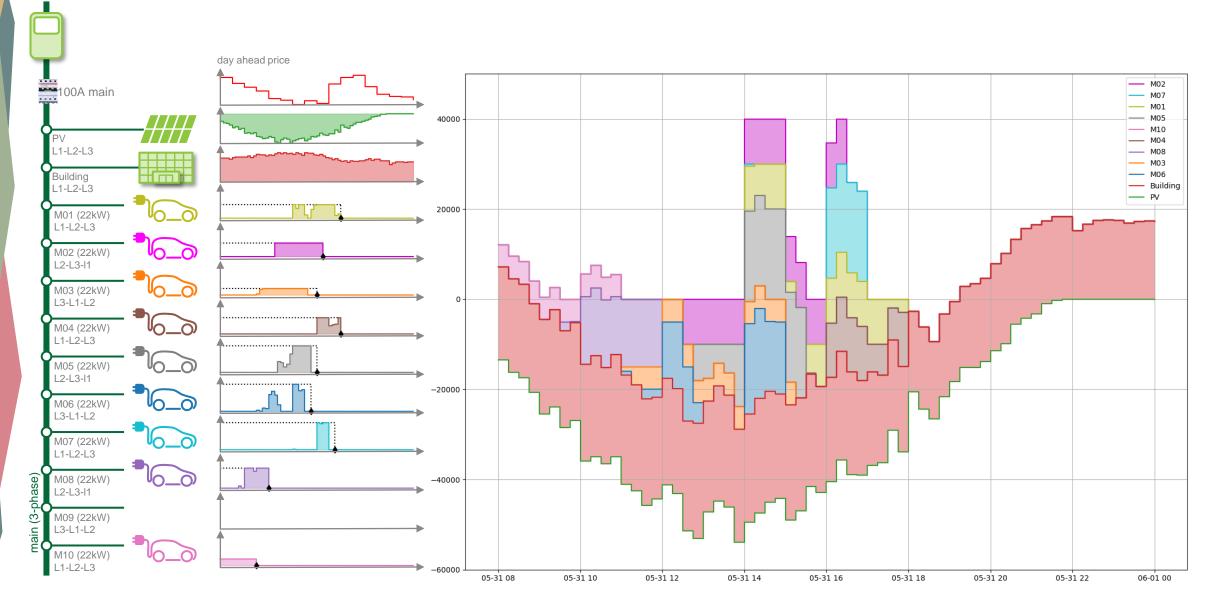

Example optimization Step 6: 4th car \rightarrow next on PV self consumption


Example optimization Step 7: 5th car \rightarrow charges immediately at any price

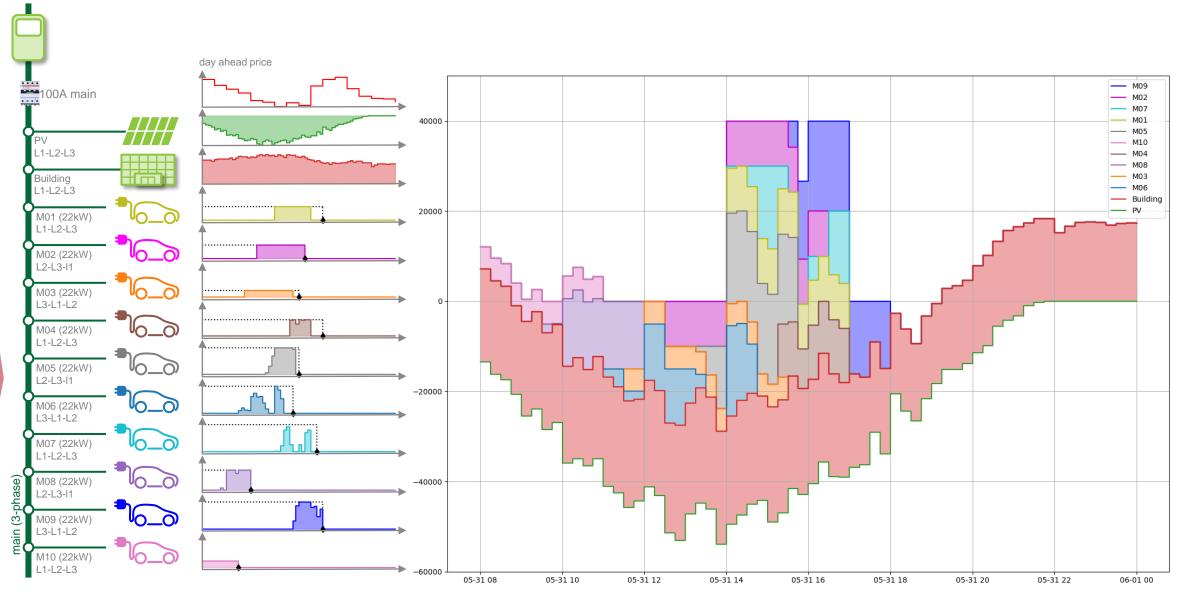

Example optimization Step 8: 6th car → shifts before last car on PV

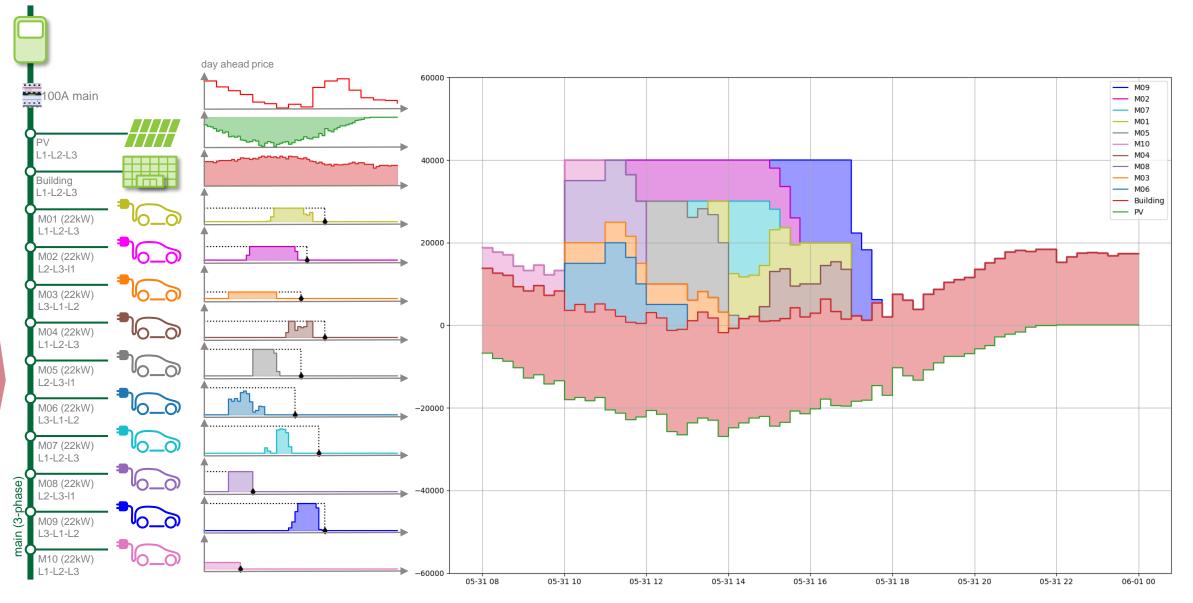


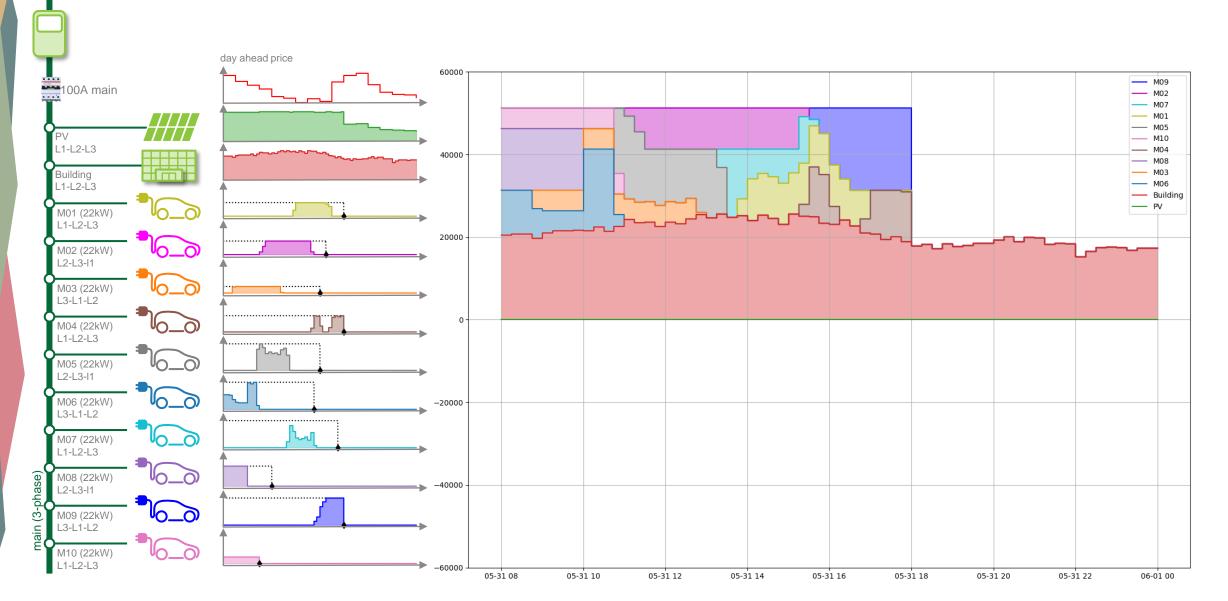
Example optimization Step 9: 7th car \rightarrow starts using the cheapest day ahead price


Example optimization Step 10: 8^{th} car \rightarrow continues using the cheapest day ahead price

HUME


Example optimization Step 11: 9^{th} car \rightarrow capacity price kicks in, second cheapest DA spot


Example optimization Step 12: 10^{th} car \rightarrow keeps spreading peak at 40kW


Example optimization Step 13: Reduced PV → planning focuses on the 40kW peak

Example optimization Step 14: No PV \rightarrow new peak can not be avoided but as low as possible

- Results in practice \rightarrow see later presentations
- MPC keeps making the best of all situations
- Collecting user data is a challenge and is not streamlined today

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

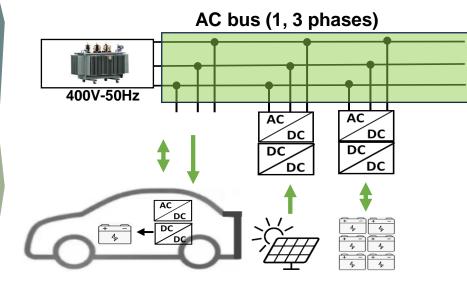
17h30-19h00: Reception & Networking

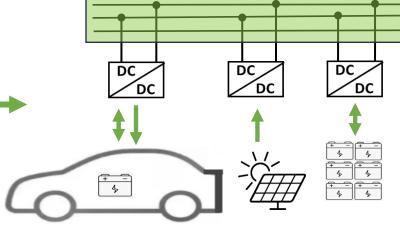
Looking deeper into the charging hardware: electrical systems and operating efficiencies

Johan Driesen, Mohamed Yasko, Attila Balint

KU Leuven/EnergyVille

14 November 2024


Content


- Electrical system architecture
- Charging efficiency tests
- □ AC charging system
- □ V2G charging system
- DC fast charging system
- Main contributions
- Future Works

Electrical system architecture

DC bus (unipolar, bipolar)

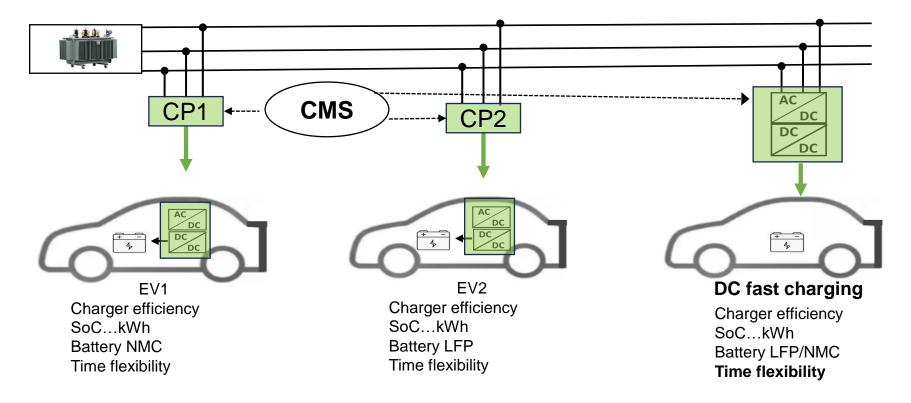
mature protection system standardized technology

complex control more conversions power quality issues

CPO: charging point operator BESS: Battery Energy Storage Systems simple control less conversions less power quality issues

Better integration of PV/BESS

complex protection system non-standardized technology


Operating Efficiency?

What is important for a CPO from an operation/business perspective?

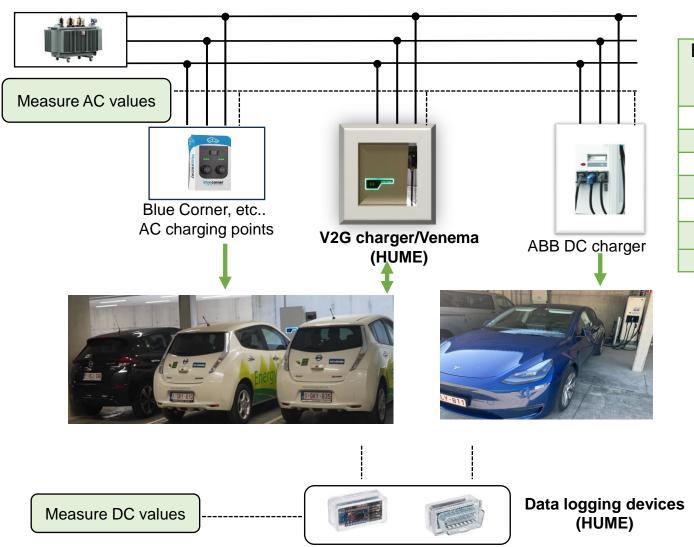
Electrical system architecture

Large scale EV charging system

Impact of operating efficiency?

CP: charging point CMS: charging management system

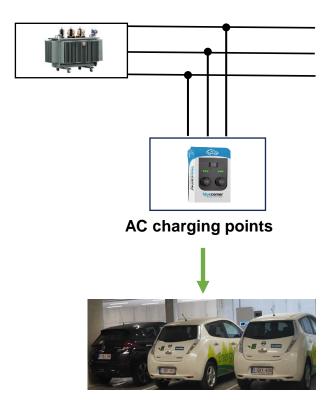
Content


- Electrical system architecture
- Charging efficiency tests
- □ AC charging system
- □ V2G charging system
- DC fast charging system
- Main contributions
- Future Works

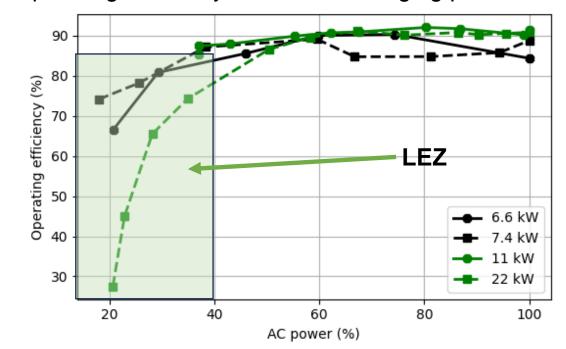
Selected testing works

Research works	Country-Year	Charging tech.	EV models diversity	Testing env.	Max power (kW)
A. Elpiniki et al.,	USA-2017	AC/V2G	Yes	Field/Lab	18
W. Schram et al.,	NL-2020	AC/V2G	Yes	Field	10
B. Reicket et al.,	DE-2021	AC	Yes	Field	11
K.Sevdari et al.,	DK-2023	AC/DC	Yes	Field	22
S. Silva et al.,	NZ-2023	AC/DC	Yes	Field	50
HUME	BE-2024	AC/V2G/DC	Yes	Field	50/150/250

Measurement setup (EnergyVille site)


Models	Bat. Tech	Bat.			V2G
	TECH.		(KVV)	((()))	
Nis. Leaf	LMO	24	1.3-6.6	46	Yes
Nis. Leaf	LMO	24	1.3-6.6	46	Yes
Nis. Leaf	NMC	40	1.3-6.6	50	Yes
Peug. e 208	NMC	46	1.3-7.4	150	No
Renault Zoe	NMC	25	4.4-43	-	No
Tesla Y SR	LFP	58	4.4-11	170	No
Tesla Y LR	NCA	75	4.4-11	250	No
	Nis. Leaf Nis. Leaf Nis. Leaf Peug. e 208 Renault Zoe Tesla Y SR	Tech.Nis. LeafLMONis. LeafLMONis. LeafNMCPeug. e 208NMCRenault ZoeNMCTesla Y SRLFP	Tech.(kWh)Nis. LeafLMO24Nis. LeafLMO24Nis. LeafNMC40Peug. e 208NMC46Renault ZoeNMC25Tesla Y SRLFP58	Tech. (kWh) (kW) Nis. Leaf LMO 24 1.3-6.6 Nis. Leaf LMO 24 1.3-6.6 Nis. Leaf NMC 40 1.3-6.6 Nis. Leaf NMC 40 1.3-6.6 Peug. e 208 NMC 46 1.3-7.4 Renault Zoe NMC 25 4.4-43 Tesla Y SR LFP 58 4.4-11	Tech.(kWh)(kW)(kW)Nis. LeafLMO241.3-6.646Nis. LeafLMO241.3-6.646Nis. LeafNMC401.3-6.650Peug. e 208NMC461.3-7.4150Renault ZoeNMC254.4-43-Tesla Y SRLFP584.4-11170

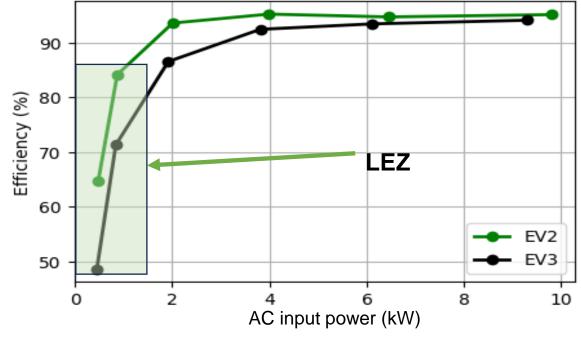
Combination of personal and company EV models with different energy requirement and power capabilities representing the EV industry



DAC charging system

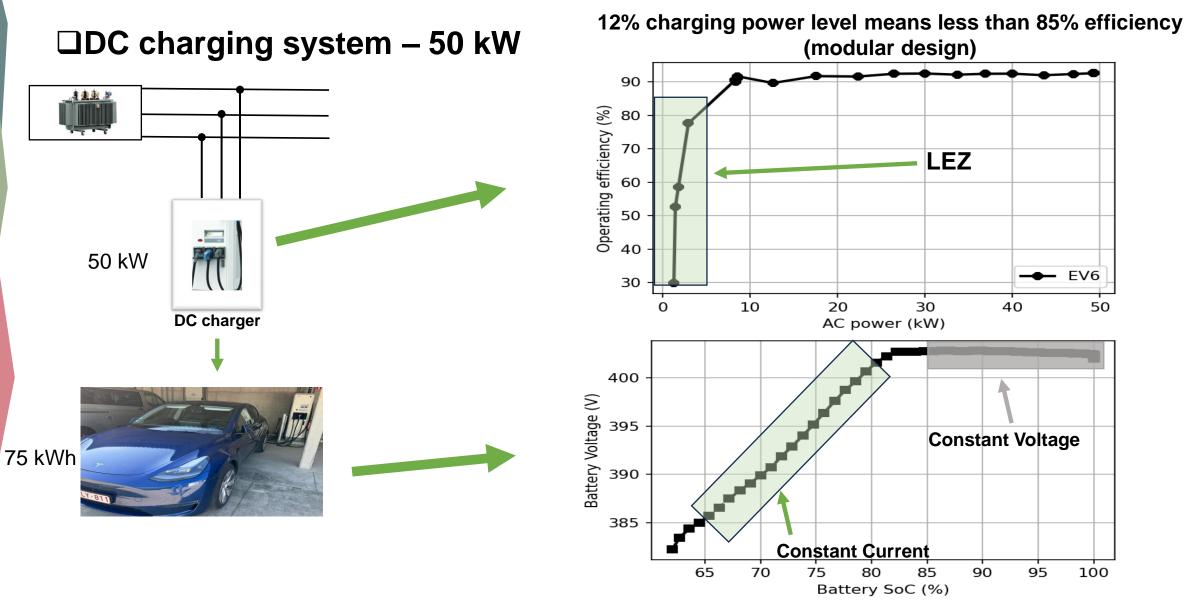
Operating efficiency at different charging power level


40% charging power level means less than 85% efficiency


M. Yasko, J. Driesen and W. Martinez, "Efficiency measurement and maximization for EV charging technologies," IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 2024.

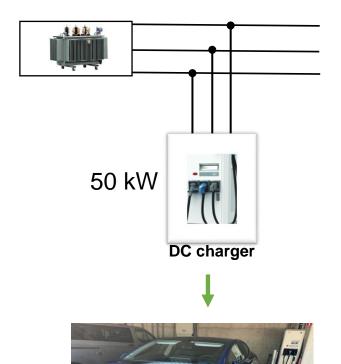
□V2G charging system

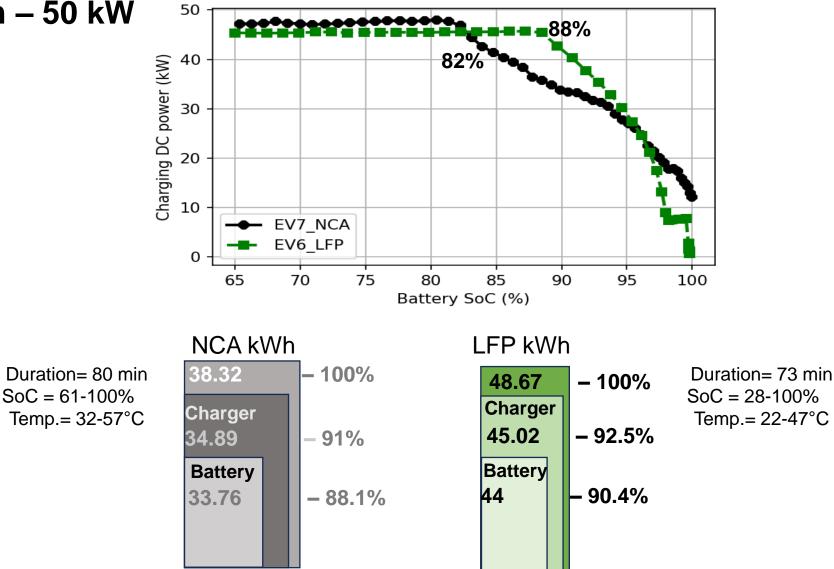
Operating efficiency at different charging power level



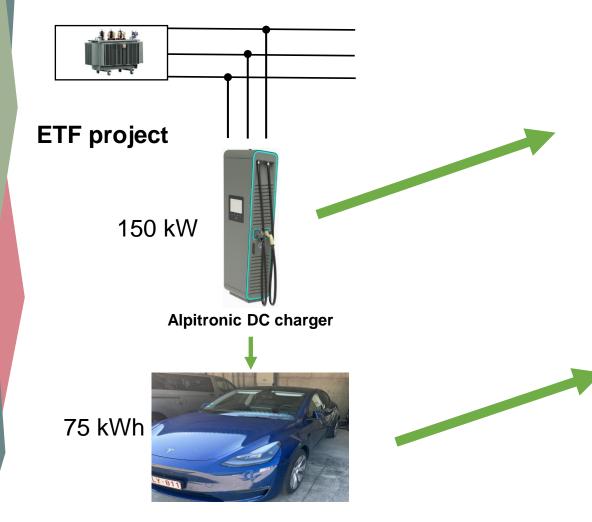
10-15% charging power level means less than 85% efficiency

Round trip efficiency could be very low if V2G is operated in LEZ

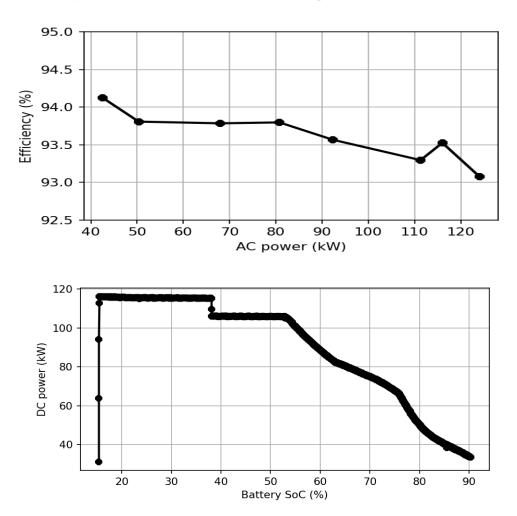

M. Yasko, J. Driesen and W. Martinez, "Efficiency measurement and maximization for EV charging technologies," IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 2024.

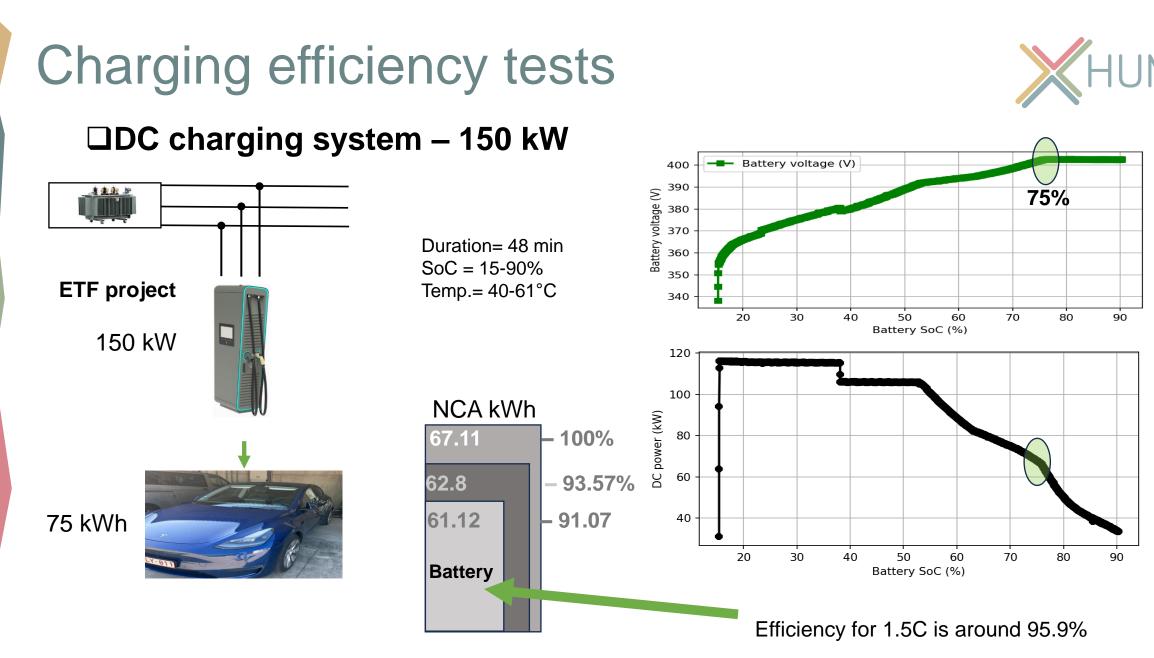


HUME



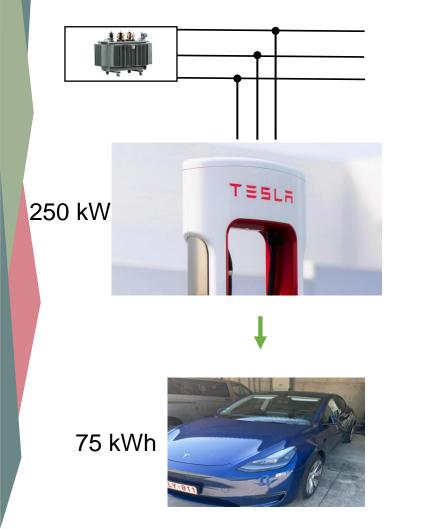
75 kWh

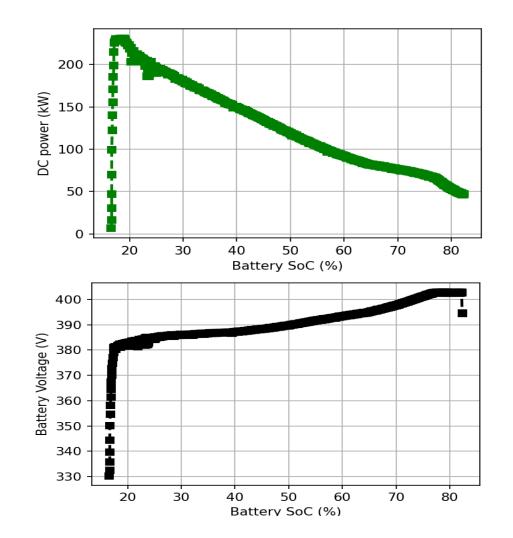




□DC charging system – 150 kW

Efficiency 93-94% (modular design, 25-80% of rated power)




L. Uwalaka, et al. "Experimental Performance Analysis of LG E-66 Cells from a Fast-Charging Porsche Taycan Battery Module," IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 2024,

Battery internal eff. (not measured in this project)

□DC charging system – 250 kW (ongoing)

AC system (On-board)

Charger 11 kW/22 KW

Low charger kW/Batt. kWh

Batt. tech.

Efficiency range can go lower than 85%

DC system (Off-board)

V2G 10 kW round trip eff. charger 50kW/150kW **High charger kW/batt. kWh Batt. tech.** Efficiency range= 90-94% (general)

EV users can limit the power...impact on the smart charging strategy and business model??

System knowledge: CPO, charging system integrators/designers, EV user etc...

Content

- Electrical system architecture
- Charging efficiency tests
- □ AC charging system
- □ V2G charging system
- DC fast charging system
- Main contributions
- Future Works

Main contributions

Project partners:

Detailed knowledge sharing with deliverables (D3.1, D3.2, D3.3, D3.4) Efficiency consideration in: -user input estimation improvement (WP2)

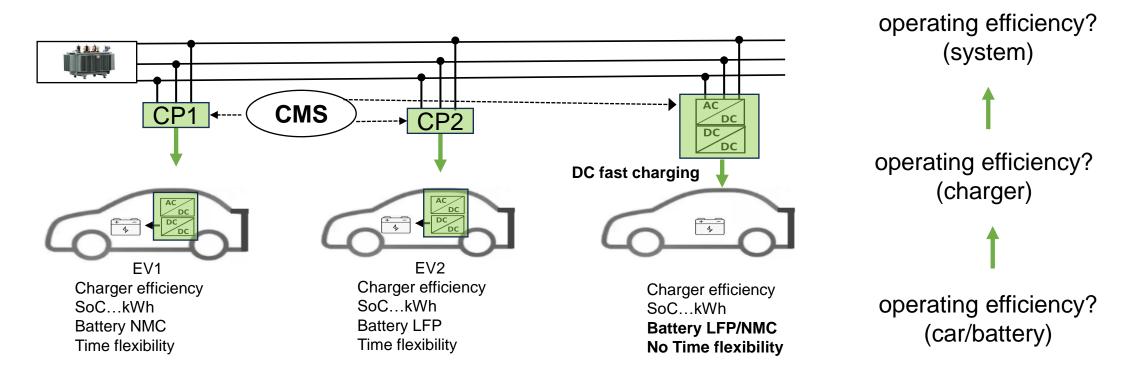
-upper-level optimization (WP2/WP5)

BE and worldwide:

Energy Transition Fund project (CPO related research), Industry in Electric Vehicle Symposium (Seoul/Korea), Academia (improving modeling), paper cited, etc...

M. Yasko, A. Balint, J. Driesen and W. Martinez, "Future workplace EV charging architectures: DC and AC charging choices," IEEE Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & Transportation Electrification Conference (ESARS-ITEC), Venice, Italy, 2023.

Content



- Electrical system architecture
- Charging efficiency tests
- □ AC charging system
- □ V2G charging system
- DC fast charging system
- Main contributions
- Future Works

Future works

Collect more measurement at 250 kW (Tesla supercharger)/ 300 kW (Fastned)
 Build models based on realistic operating conditions
 Train AI models to predict/control system efficiency

Testing/controlling capabilities for higher power are needed

CP: charging point CMS: charging management system

Thanks

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

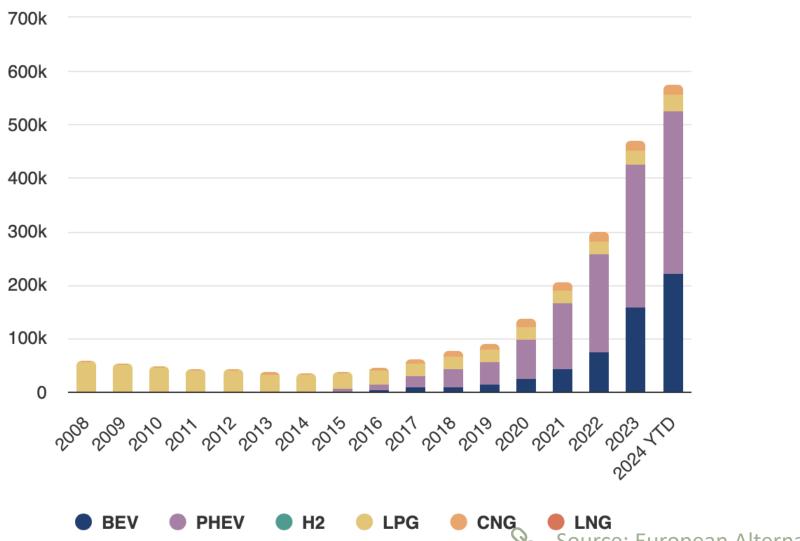
- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

4.2 Value of new parking and charging services

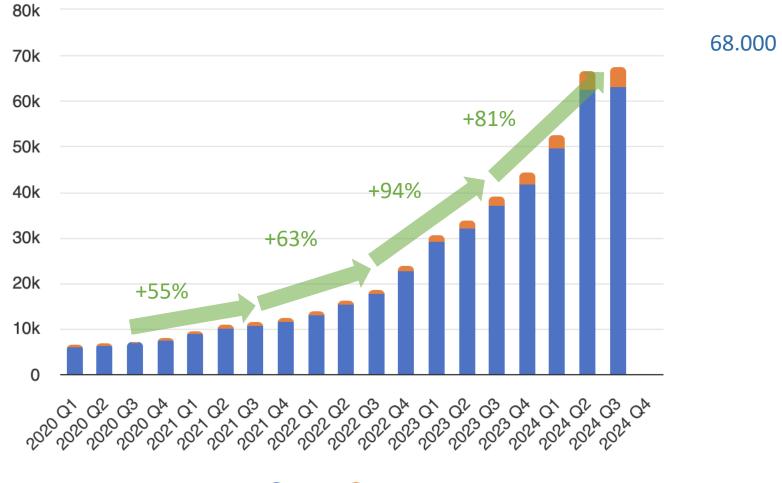
Sam De Frene

Blink Charging


Workpackage 4.2: goal

- Business impact of optimizing EV Charging spots
 - Increase amount parking spots with chargers
 - Increase utilization of EV spots
 - Decrease usage of non-renewable sources
 - Use charging flexibility to ensure grid stability
- Business model innovation within contractionary environment

EV Growth in Belgium



LNG Source: European Alternative Fuels Observatory

AC and DC Chargers in Belgium

68.000 chargers

AC 🛛 🔴 DC

Source: European Alternative Fuels Observatory ¹¹³

Charging is more than technology

Understanding the EV Charging Ecosystem

Charging Requirements

Cities: want to give the streets back to its citizens

Car Ownership: 4 out of 10 citizens own a car EV: 1 out of 3 cars will be electric in 2030

Target Europe: 1 EV charger per 10 EV's

Gent: 268.000 citizens \rightarrow 107.200 cars \rightarrow 35.700 EV's \rightarrow 3.500 chargers

Antwerp: 536.000 citizens \rightarrow 214.000 cars \rightarrow 71.500 EV's \rightarrow 7.000 chargers

Where will we charge?

Paal volgt wagen?

Al 1.300 publieke laadpalen aangevraagd. "We zitten op schema"

Sinds september 2022 kun je een publieke laadpaal aanvragen in het kader van het "Paal volgt Wagen"-initiatief. Er zijn ondertussen 1.300 aanvragen ontvangen. Volgens Vlaams minister van Mobiliteit Lydia Peeters (Open VLD) loopt alles volgens plan en zit de installatie van laadpalen op schema.

Aanvragen voor "Paal volgt wagen" zijn er genoeg: 1.300 sinds september 2022. Er zijn er ondertussen 46 actief, 165 wachten nog op een aansluiting door Fluvius.

Cities have their Plans...

Oslo bant auto's uit centrum hoofdstad

19 oktober 2015 19:29

In het centrum van de Noorse hoofdstad Oslo zijn vanaf 2019 geen wagens meer toegelaten. De overheid wil zo de uitstoot van broeikasgassen met de helft verminderen, aldus de Arbeiderspartij, de Linkse Socialistische Partij en de Groenen, die na de verkiezingen van 14 september Oslo zullen leiden. In de zone die autovrij wordt, woont slechts een duizendtal mensen, maar werken wel ongeveer 90.000 anderen. Het is nog niet bekend welke voorwaarden zullen gelden in de zone, maar de handelaars in de winkelcentra in het centrum van de stad vrezen voor minder inkomsten.

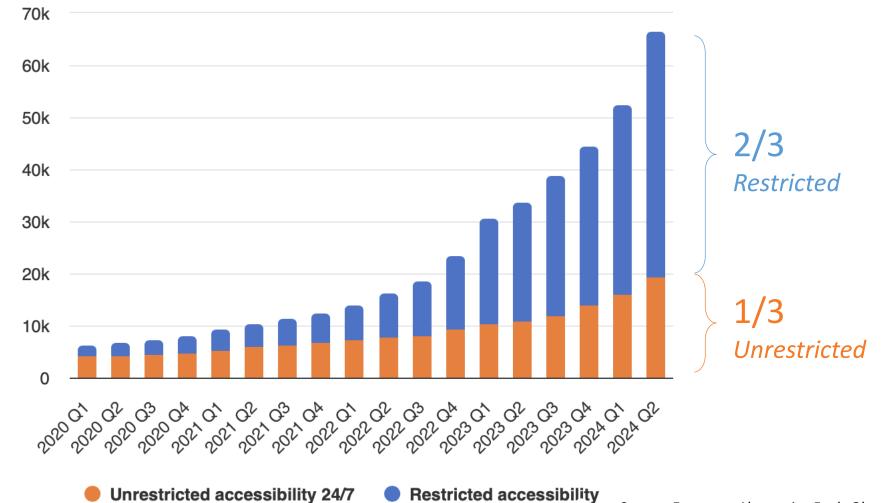
Gent, ineens een voetgangersoase maar nog wel met kinderziekten

Van de ene dag op de andere is Gent totaal veranderd. Waar eerst de auto regeerde, hebben nu voetgangers en fietsers het voor het zeggen. De ervaringen van het autoluwe Groningen dienden als richtlijn.

Leen Vervaeke 5 april 2017, 02:00

Antwerpen bant straatparkeren voor bezoekers binnenstad: 'Nieuwe parkeerregels zullen stad aangenamer maken'

How to get more chargers?



...without the need for more public space

- 1. Shared use of infrastructure
- 2. Transform private to semi-public
- 3. Optimized hubs outside city center
- 4. Innovation

Better access Semi-Public

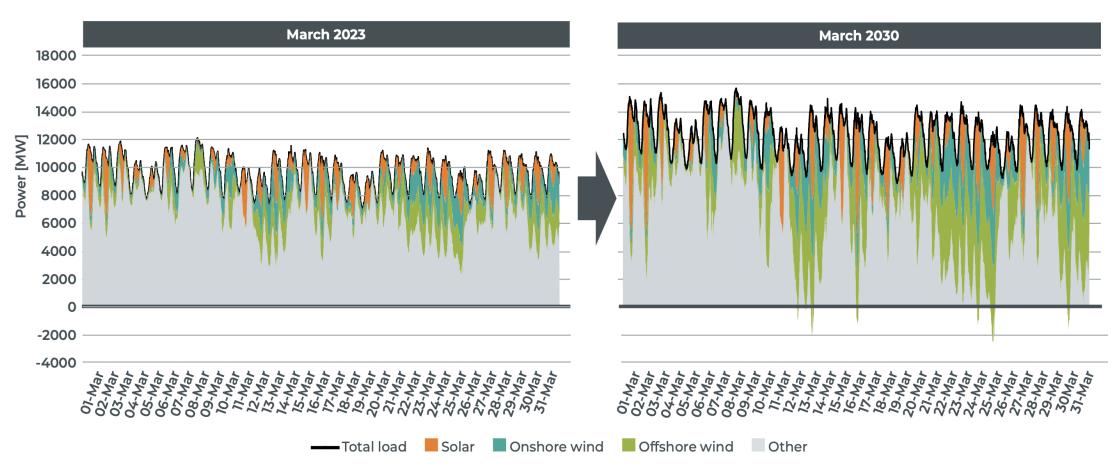
120 Source: European Alternative Fuels Observatory

Better access to semi-public

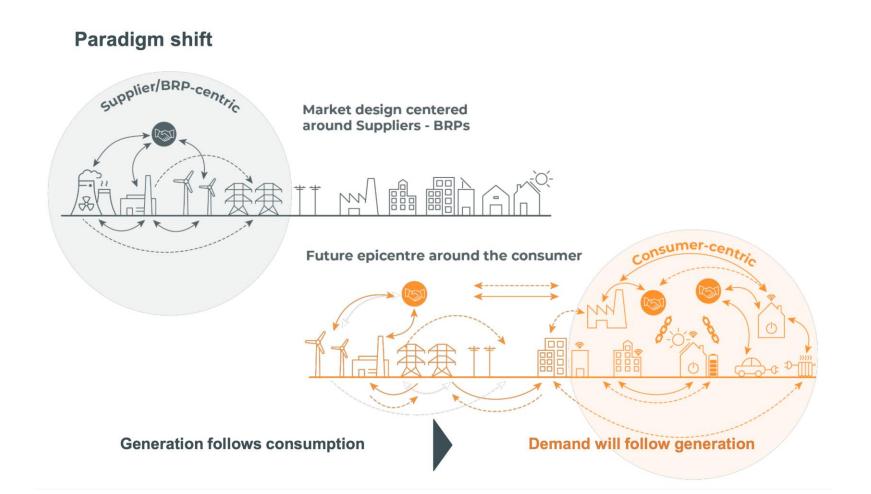
Optimized Charging Islands

Neighbourhood parkings and association of co-owners

How to get more chargers available XHUME

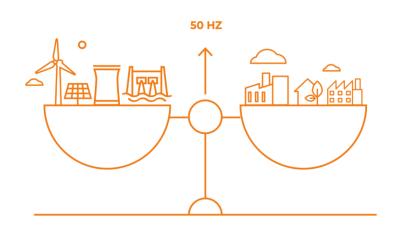

...and parking

What about electricity and grid capacity?

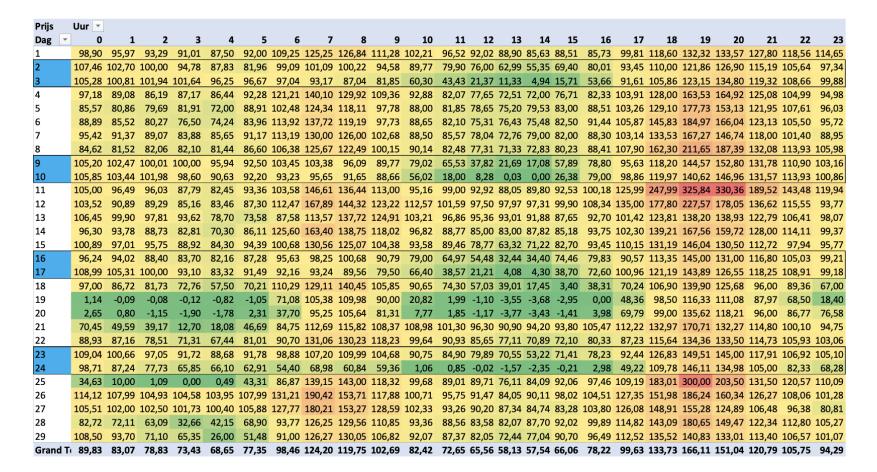

Evolution of RES and Consumption: XHUME exprapolated

Source: Elia Adequacy & flexibility study for Belgium (2024-2034)

Energy System of the future = Consumer Centric


Demand follows generation: Flexibility

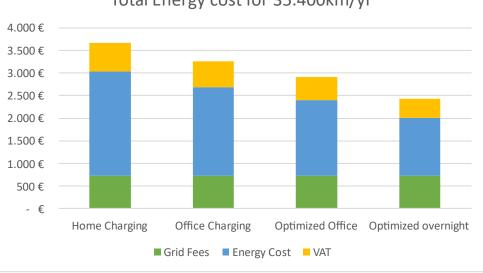
• Implicit Flexibility

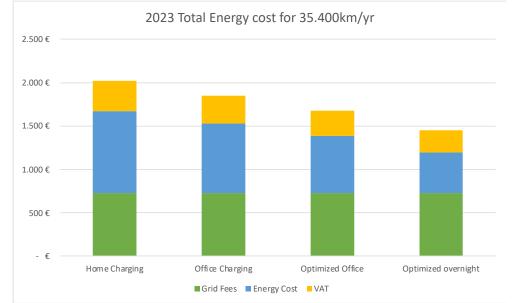


- Activation decided by owner
- Price signal based
- Day Ahead Market
- Intraday
- Imbalance

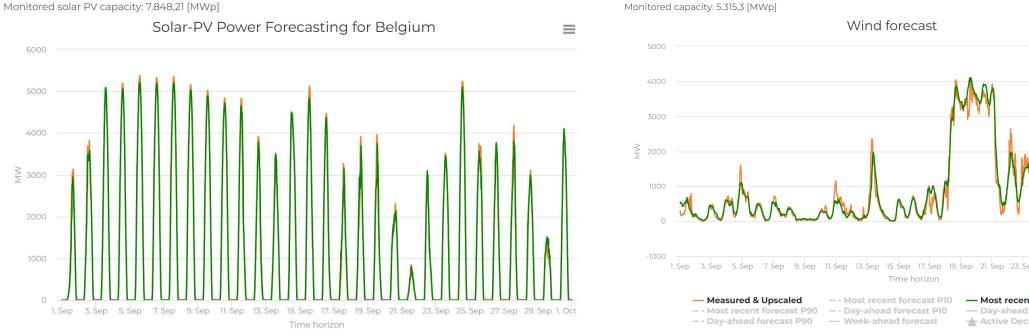
- Explicit Flexibility
 - Activation by Elia (hard signal)
 - Auction Based
 - Obligation to deliver
 - FCR
 - aFFR
 - mFFR

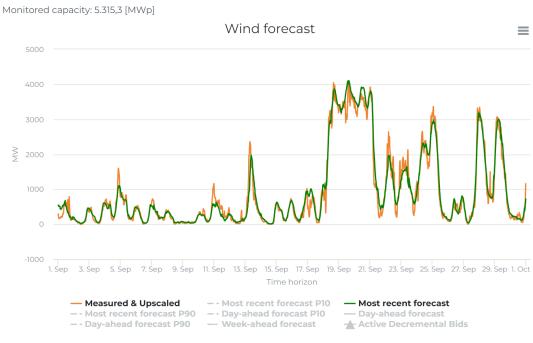
Day-Ahead based charging (Time of Use)





Charging cost per scenario

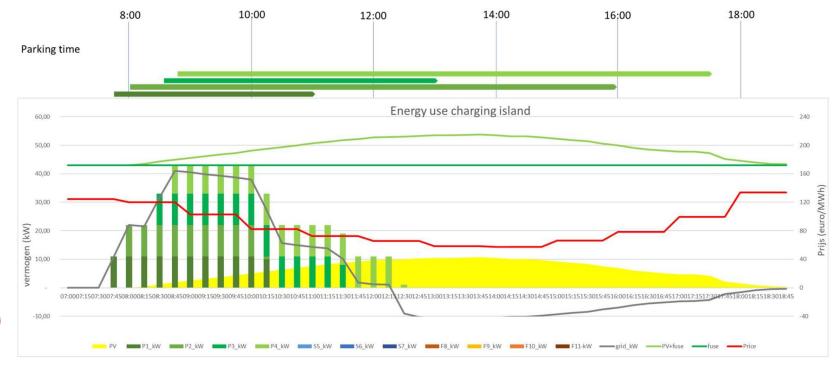

- One EV •
 - Aprox 100km/day •
 - 20kWh/100km
- Schedule 1: Home Charging
 - Daily at Home @18:00
 - Avg 2022: 0,50 €/kWh
 - Avg 2023: 0,28 €/kWh
- Schedule 2: Office Charging
 - Daily at Work @ 9:00
 - Avg 2022: 0,45 €/kWh
 - Avg 2023: 0,25 €/kWh
- Schedule 3: Optimized office
 - Daily at work @ 12:00
 - Avg 2022: 0,40 €/kWh ٠
 - Avg 2023: 0,23 €/kWh
- Schedule 4: Optimized home •
 - Optimized at Night @3:00
 - Avg 2022: 0,33 €/kWh
 - Avg 2023: <mark>0,20 €/kWh</mark>



Total Energy cost for 35.400km/yr

Charge when the renewable energy is available

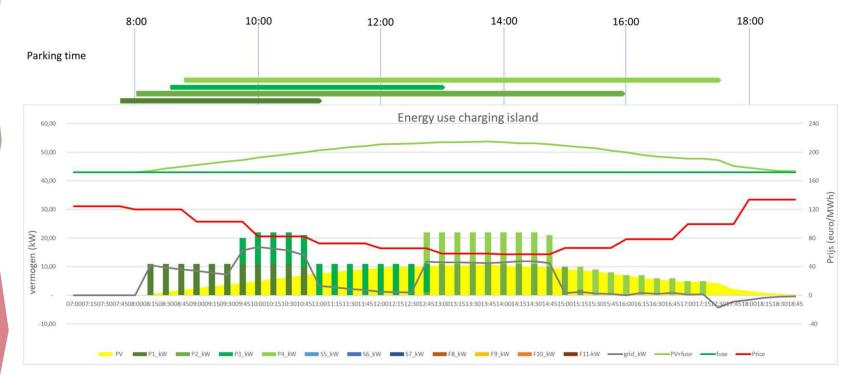
Solar Forecast



IUME

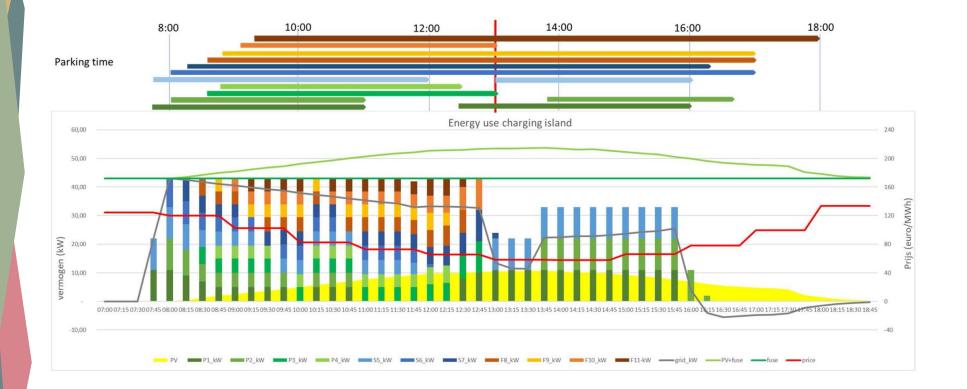
Wind Forecast

Algorithms: unoptimized



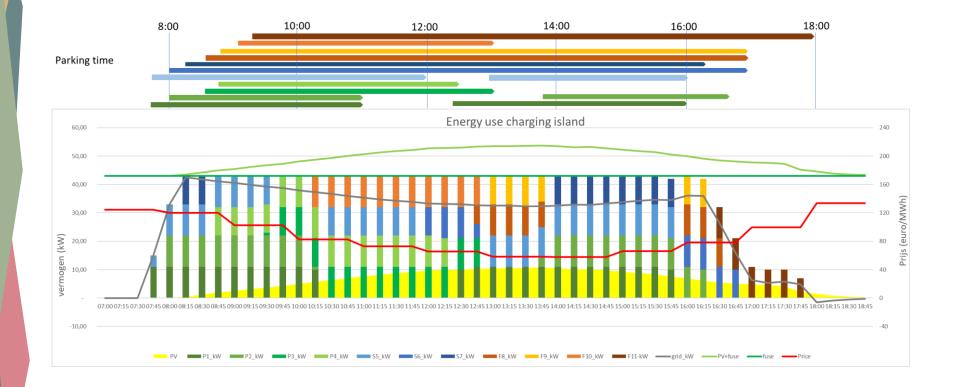
- High Peak usage (44kW)
- At higher average cost (0,19 €/kWh)

Algorithms: Solar and price optimized



• Solar optimized

Algorithms: Loadbalancing



- Not all charging need met
- Higher Energy cost (0,09 €/kWh)

Agorithms: Smart Charging

- All demand is met
- At a lower total cost (0,08 €/kWh)

Optimal Public Charging

• What does the customer need?

- Volume of kWh
- Time to leave?
- What is the customer preference? (willing to pay)
 - Flex Charging (Cheapest)
 - Standard Charging
 - Greenest Charging
 - Priority Charging (Fastes)

Optimal optimization? -> user interaction required

- User interaction will be needed to feed the algorithms
 - Example

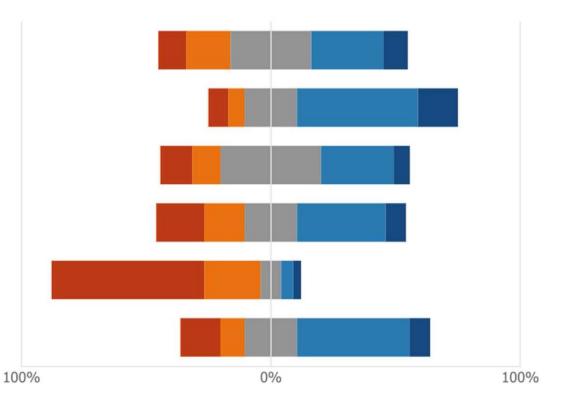
What do Employees want? Pricing options

No Interest Less Interest

st 🔳 Neutral 📃 Interesting

Very Interesting

Charging prices based on ecological choice (e.g., renewable energy)


Charging based on a fixed price by speed of charging

Ability to define the price based on the time you stay.

Subscription-based model that offers unlimited charging at a fixed monthly fee

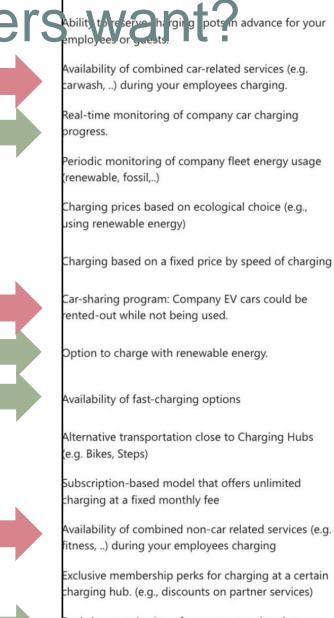
Car-sharing program where you can rent out your EV when you're not using it

Pay less by allowing your charging speed to be variable

What do Employees want? Services

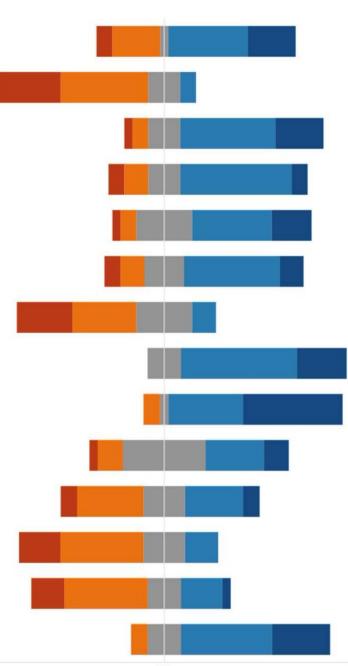
(1)Not Important
(2) Less Important (3) Neutral (4) Important (5) Very Important Ability to reserve a charging spot in advance Availability of combined car-related services (e.g. carwash..) during your charging. Exclusive membership perks for charging at a certain charging hub. (e.g., discounts on partner services) Notification on charging status of my car. Option to charge with renewable energy. Availability of fast-charging options Having amenities (e.g. WC, Wifi) at the mobility hub? Availability of combined non-car related services (e.g. fitness, ..) during your charging Notification on charge progress of my car.

Access to alternative transportation (e.g. Bikes, Steps)


• Want

- Visibility, monitoring, Renewable Energy option
- Fast Charging
- Don't want
 - Car sharing
 - Other services in general

What do employers Ability to reserve hir give potern advance for your


• Want

- Visibility, monitoring, reporting
- Charge rates on origin of energy
- Renewable Energy
 option
- Don't want
 - Car sharing
 - Other Services

Real-time monitoring of company car charging status.

100%

0%

Vision towards 2030

- EV's will continue to grow to 2M by 2030
- Business model cost drivers (rotation fees, starting fee) will evolve to a more transparent model
- Interest in add-on services on top of EV charging will increase.
- EV's cause an important impact on the energy need of a country. But these EV's will play an important role in the grid stability services.
- Connected cars will create value if there is a frictionles transfer of signals and financial retrun between the different actors

Thank you for your attention

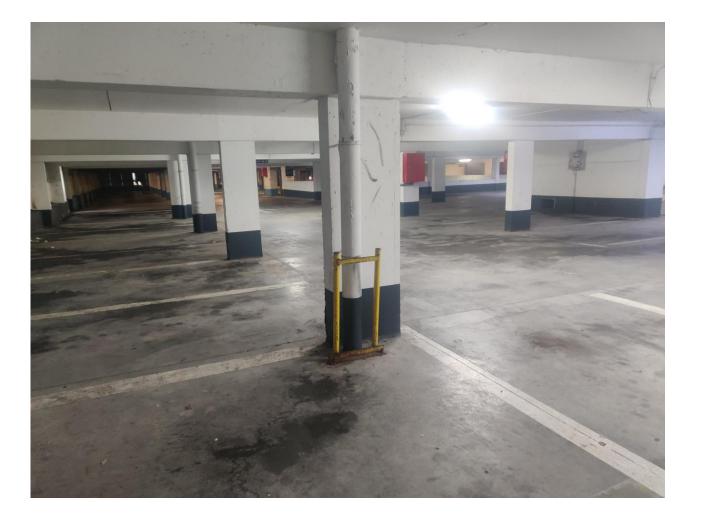
Sam De Frene

Blink Charging Belgium +32 495 587427

https://www.linkedin.com/in/samdefrene/

New insights in service & business models

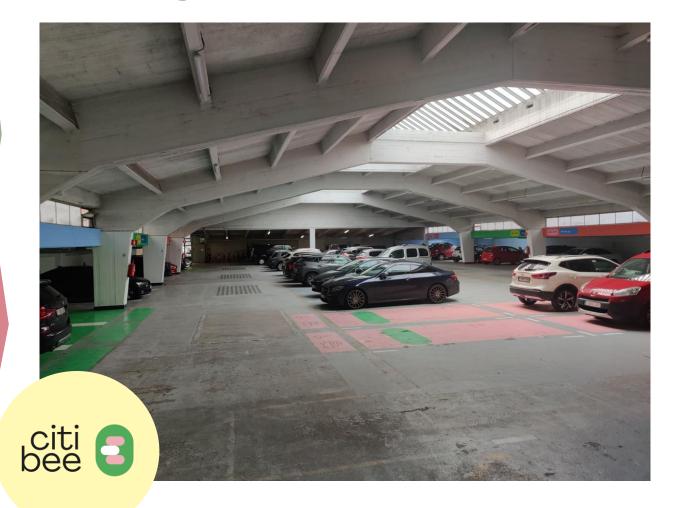
Citibee


Leegstand van parkings = onderbenutting van laadpalen

Leegstand parking plekken Ongebruikte laadstations

Verloren zonne-energie

Investeren we te veel?



- Bestudeer de nodige capaciteit
- Werk modulair en zorg voor uitbreidbaarheid
- Stop over-investeren bij het plaatsen van zonne-energie en laadpalen

Parking Moorkensplein – winstgevend model

- 100 fietsplaatsen
- 13 laadpunten
- 1600m² PV op het dak
- 15% oververhuring excl. reservaties
- Omzet verdrievoudigd op 3 jaar

Stakeholders helpen bij de optimalisatie van energieverbruik

BEDANKT

Jasmien Vanvooren – jva@citibee.be

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

Agenda

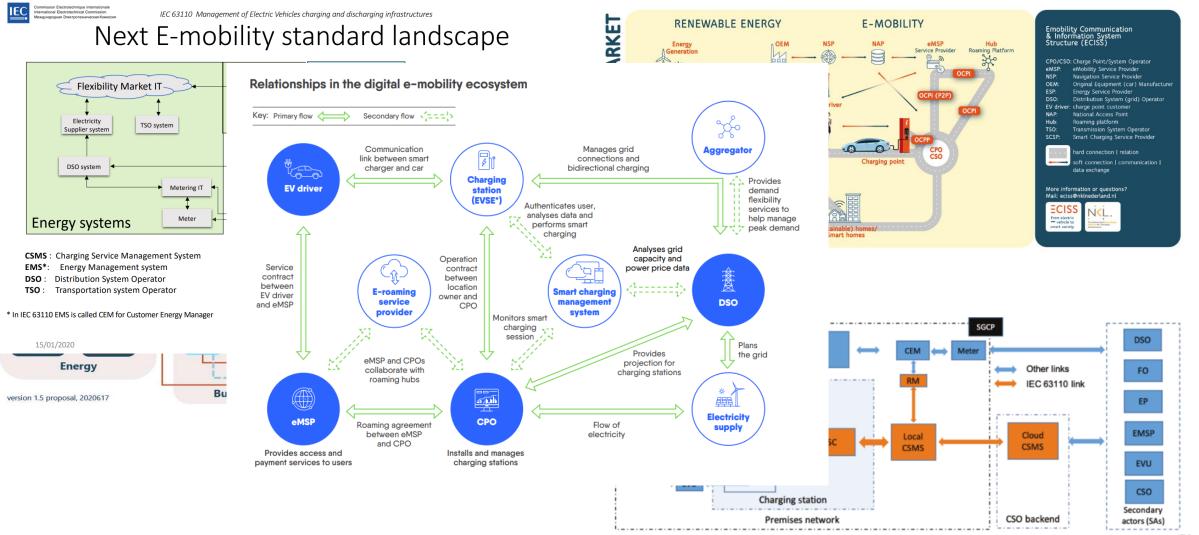
12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

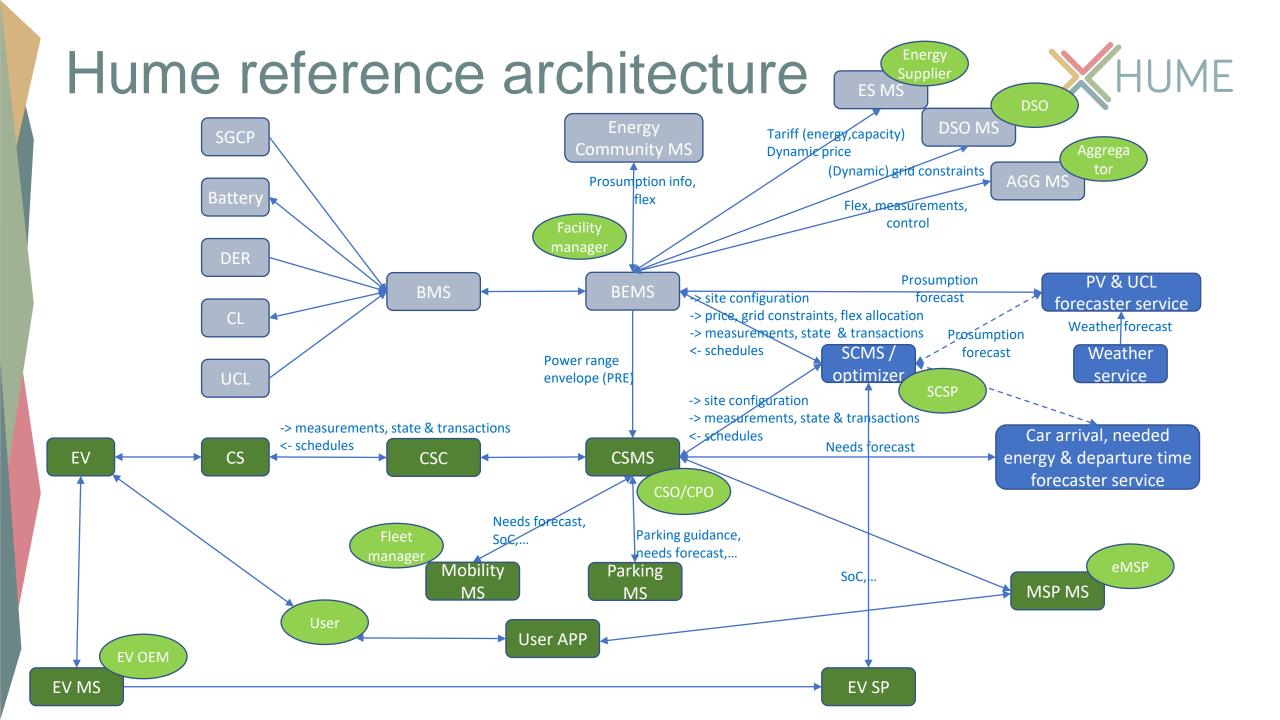
- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

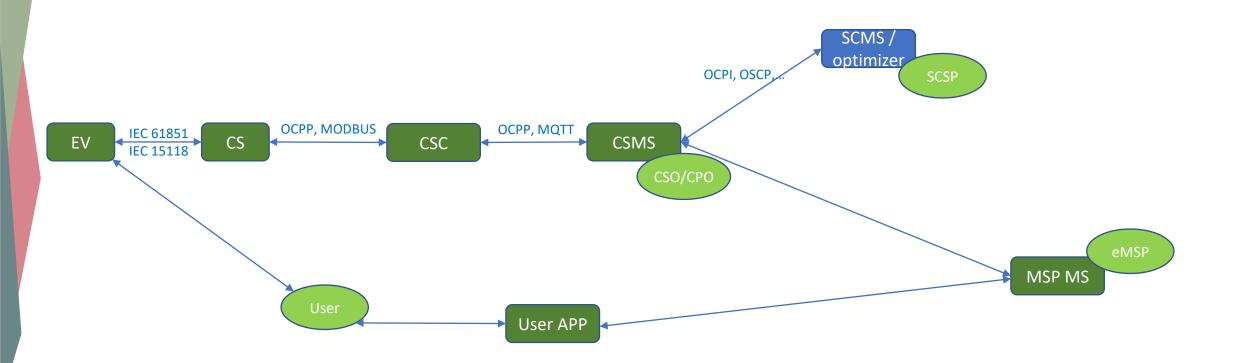

WP5 : architecture

Dominic Ectors (VITO)

Existing reference architectures



Reference architecture


• For Hume focus on :

- Site optimization
- Interaction with other management systems:
 - BEMS (local DER resources), mobility planning system, local controller,...
- Interaction between a CSMS (CPO/CSO) and SCMS (SCSP)
- Interaction with the end-user

Hume reference architecture

Interaction between CSO and SCSP XHUME

- Open Charge Point Interface (OCPI) was selected as protocol
- A gap analysis was done between OCPI 2.2.1 and the existing REST API that was used at EnergyVille
- Defined several protocol extensions
 - Smart charging preferences from CSO to SCSP
 - Site configuration
 - Site measurements
- Implemented an OCPI version based upon an open source implementation
- Deployed it at the EnergyVille1 site

Conclusions

- Focus is on **site** optimization in this reference architecture taking into account local DER, site constraints, e-mobility requirements
- Decided not to transform OCPI from a mobility protocol into a EMS protocol
 - SCSP still needs additional protocols to retrieve the necessary site info (configuration of the site, information about non-mobility assets,...) to perform a site optimization
- Architecture allows multiple coordinating (energy) management systems. In Hume we choose for an overall optimization.
- E-mobility architecture and protocol landscape is still evolving
 - Multiple competing protocols, regulation (billing,...), grid constraints, flex harvesting, ...

Open for future exploration

- How to improve retrieval of user charging preferences
 IEC/ISO 15118, forecasting, CAR OEM path, ...
- Charging flexibility is in Hume used for local cost optimization. Flexibility can also be offered to external actors.
- Benchmarking cooperating EMS systems vs overall optimization
- V2G

Thank you

Dominic Ectors, VITO/EnergyVille

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - EnergyVille1 (Genk) (VITO Dominic Ectors)
 - Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event
- 17h30-19h00: Reception & Networking

Closing Event: 14/11/2024

Tour & Taxis Proof of Concept: Royal Depot

Tim Van Dorpe – Energy Manager

HUME: Proof of Concept (PoC)

- Introduction Nextensa
- Location: Tour & Taxis / Royal Depot / PoC
- Objectives
- Technical specifications
 - Electric capacity
 - PV-installation
 - EV-installation
 - Uncontrollable load
- Setup & Optimisation settings
- Results: key figures & findings

Introduction Nextensa

PLACES YOU PREFER

KEY FIGURES BALANCE SHEET AND INCOME STATEMENT

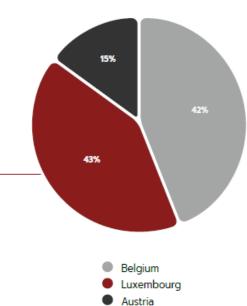
nextensa.

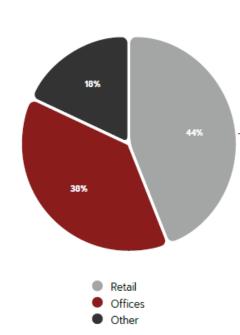
KEY FIGURES BALANCE SHEET	31/12/2023
Fair value investment portfolio (€ 000s)	1,298,074
Fair value investment properties, incl. participation Retail Estates (€ 000s)	1,385,369
Investment value investment properties (€ 000s)	1,323,221
Net asset value group share (€ 000s)	834,048

KEY FIGURES INCOME STATEMENT	31/12/2023
Rental income (€ 000s)	70,522
Income from development projects (€ 000s)	18,136

PIPELINE DEVELOPMENT PROJECTS

The pipeline of development projects in Belgium and Luxembourg is as follows:


PROJECT DEVELOPMENT

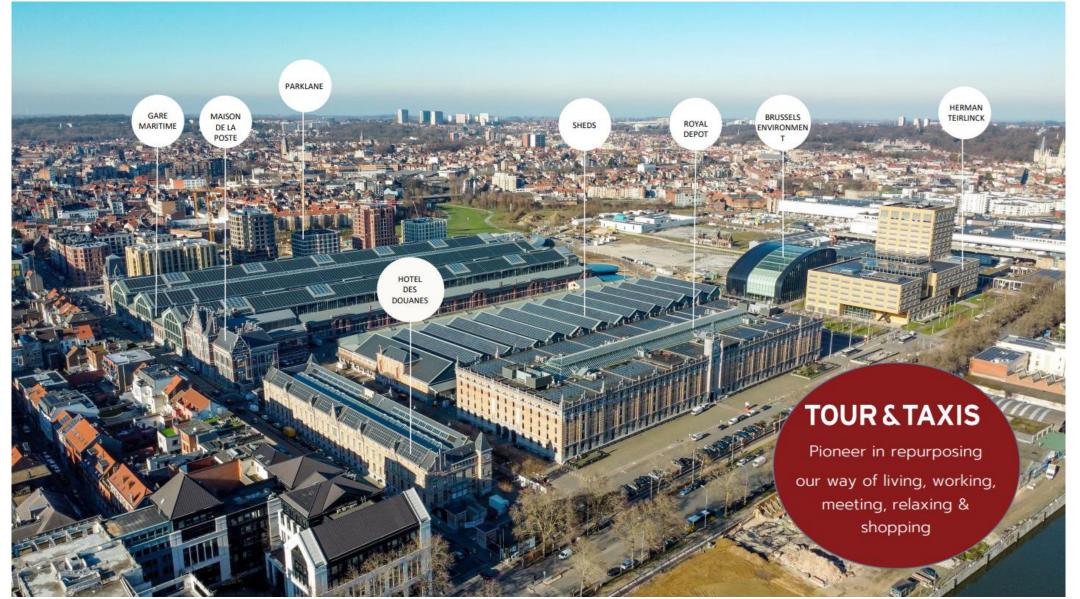

	UNDER CONSTRUCTION		PERI OBT#	MITS AINED	IN STUDY		
	•		0		•		
(1) Residential	36,520 sqm	33,766 sqm	N/A	32,401 sqm	93,000 sqm	12,000 sqm	
Offices	N/A	N/A	N/A	13,500 sqm	37,500 sqm	66,066 sqm	
TOTAL: 🌔 167,020 sgm 🚍 157,733 sgm							

THE CONSOLIDATED INVESTMENT PORTFOLIO

The consolidated investment portfolio of Nextensa NV at the end of 2023 comprises 30 buildings (including the re-developments of investment properties) with a total lettable surface area of 403,207 sqm. The investment portfolio is geographically spread across the Grand Duchy of Luxembourg (43%), Belgium (42%) and Austria (15%).

THE FAIR VALUE OF THE INVESTMENT PORTFOLIO

The fair value of the investment portfolio amounts to \notin 1.30 billion at the end of 2023 compared to \notin 1.28 billion at the end of 2022. This increase is explained by the acquisition of a couple of buildings during 2023.


Consequently, the company held 38% offices in portfolio, 44% retail and 18% others at the end of 2023 (compared to 47% offices, 44% retail and 9% others at the end of 2022).

TOUR & TAXIS

YOU, TOMORROW

Introduction Royal Depot

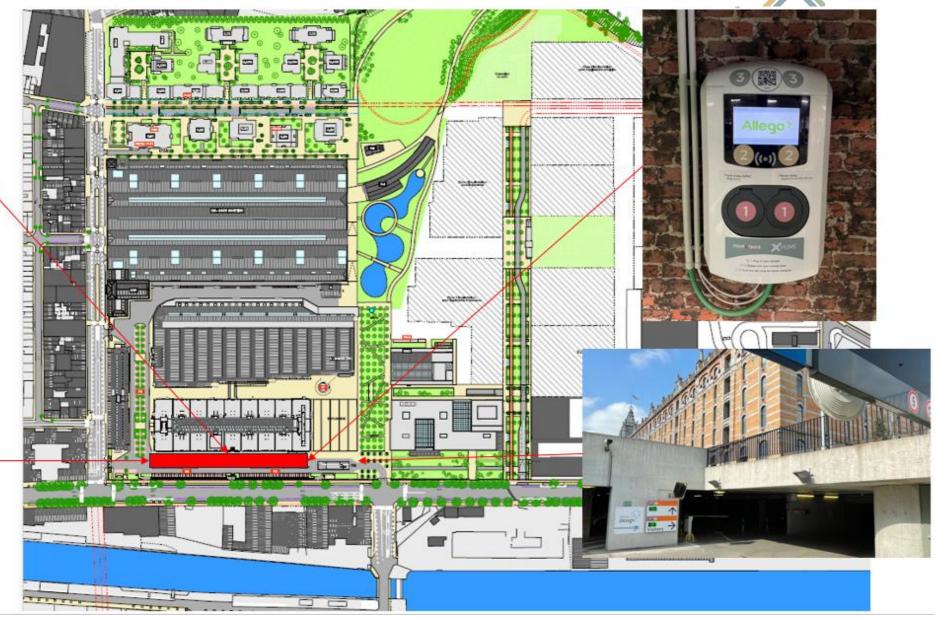
ROYAL DEPOT, TOUR & TAXIS, HAVENLAAN 88, BRUSSELS

> Type: Mixed-use Surface: 45,204 sqm Status: Completed

Multi-functional and 'multi-tenant' building with 4 floors, spread across offices (32,076 sqm), commercial spaces (7,293 sqm) and archives (5,835 sqm).

Year of construction: 1904-1906

TOUR

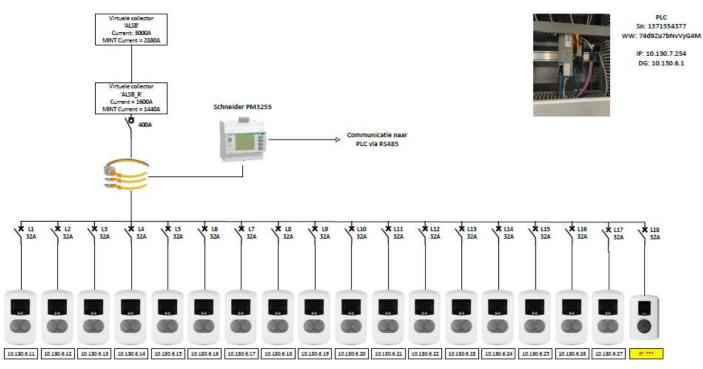

LTAXIS

Purpose: storage of goods under government supervision

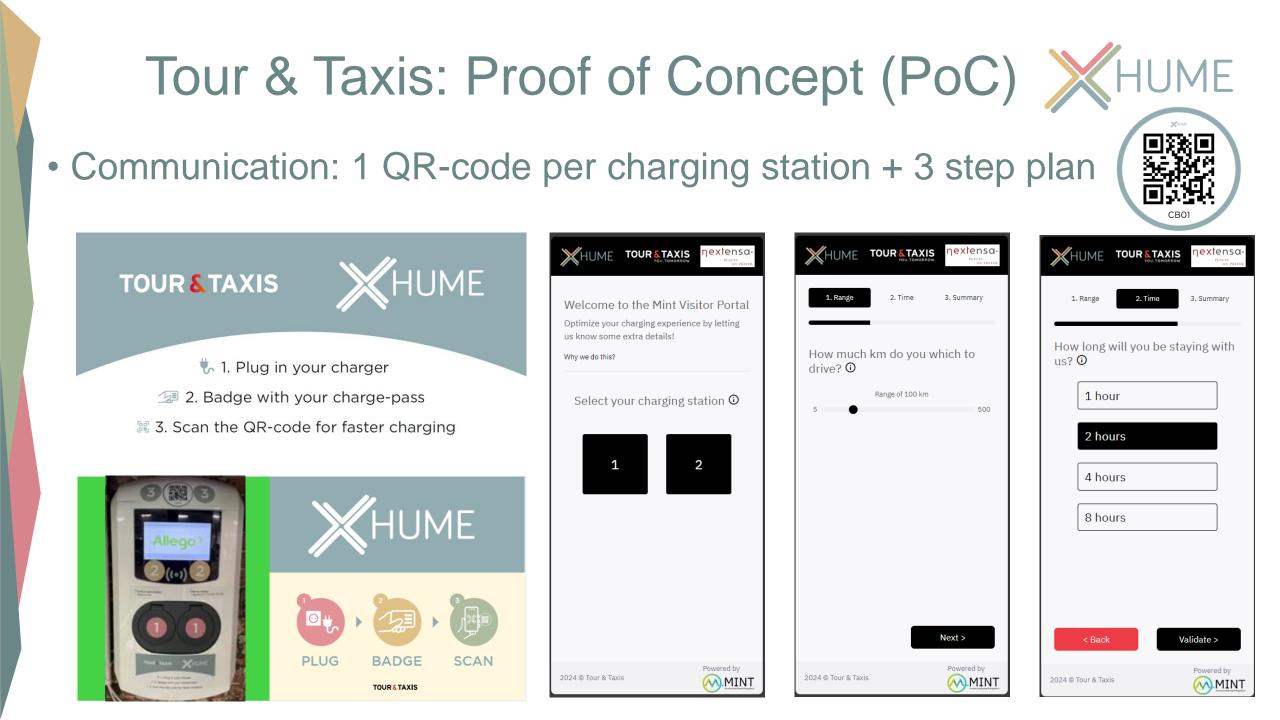
Completely renovated in 2003/2004

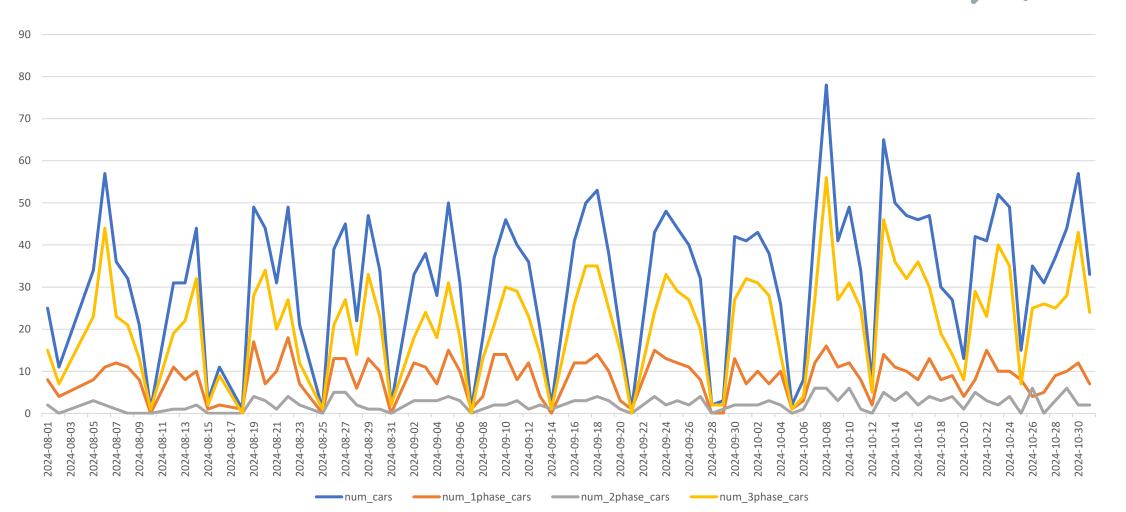
Introduction: Proof of Concept XHUME

Proof of Concept: objectives

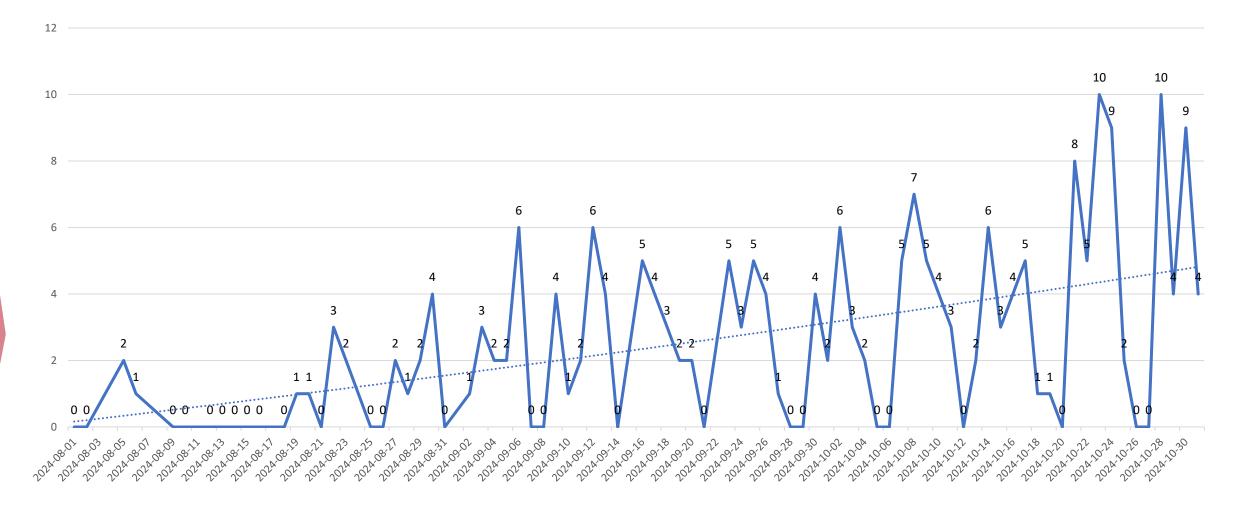

- 1. Peak shaving
- 2. Maximize current per phase
- 3. Increase PV self-consumption
- 4. Shift consumption to low hourly prices
- 5. Integrate different services levels and related prices (priority management)
- 6. Charge session reservation / guarantee
- 7. Integrate battery + inverter supporting phase balancing
- 8. Minimize CO₂ emissions
- 9. Integrate vehicle-to-grid + inverter supporting phase balancing
- 10. Balancing services FCR
- 11. Increase energy efficiency

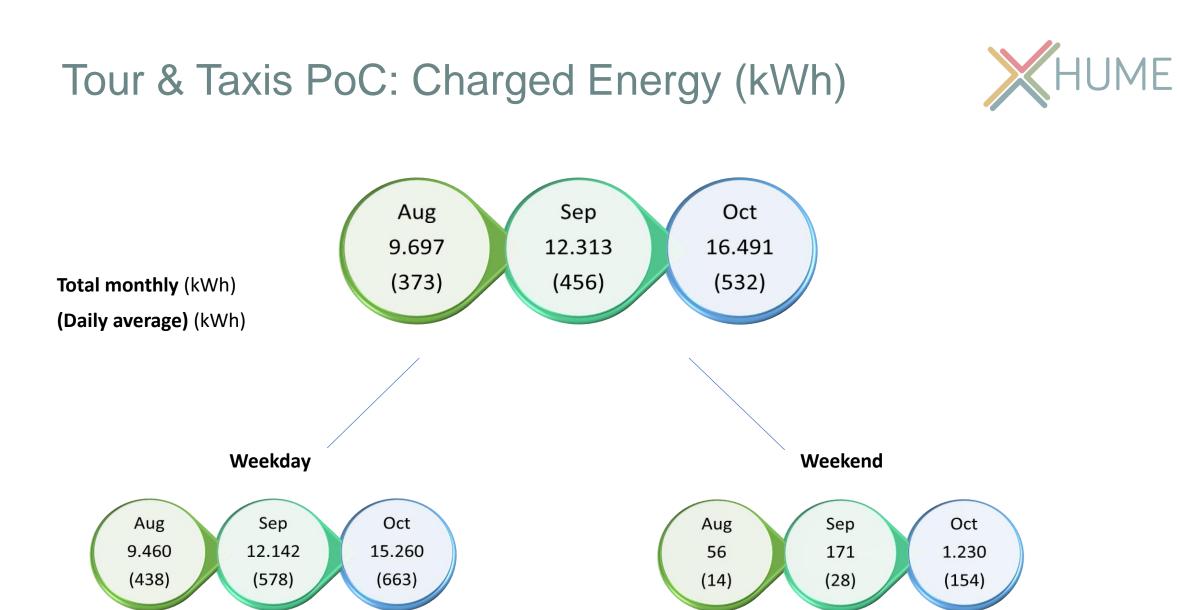
Tour & Taxis: Proof of Concept Tour&Taxis Koninklijk Pakhuis METERS 🕨 🥐 Gas Technical specifications F Grid injection Grid offtake • PV-installation: Mains Batiment B (+) 🔻 🕴 Mains Batiment B (-) °C Outside temperature • Capacity: 860,62 kWp 🔻 🛉 PV production PV NOB1 sheds Production: 650 MWh/year PV NOB2 entrepot PV NOB3 entrepot Uncontrollable load: 👻 🛉 Total consumption 🔻 🕴 ALSB L (Zuid) • HVAC system: 346kW EB-LA FEB-LV • EV-installation: HVAC GP1-GP3 HVAC GP2-GP4 HVAC Lucht-Wate...armtepomp Zuid Main power switch: 400A HVAC Stookplaats Zuid ALSB R (Noord) 35 charging points of 11kW EB-RA (consumption) EB-RA totaal meting • Electric capacity: EB-RV HVAC GP5-GP7 • Building: 2.520 kVA (4 x 630 kVA) HVAC GP6-GP8 HVAC Lucht-Wate...rmtepomp Noord • Grid connection (contract): HVAC Stookplaats Noord F Laadpalen Koninklijk pakhuis • Sibelga: 2.230 kVA Transfo 1 Transfo 2 Transfo 3 Transfo 4 Water




• Setup technical: Phoenix Contact PLC

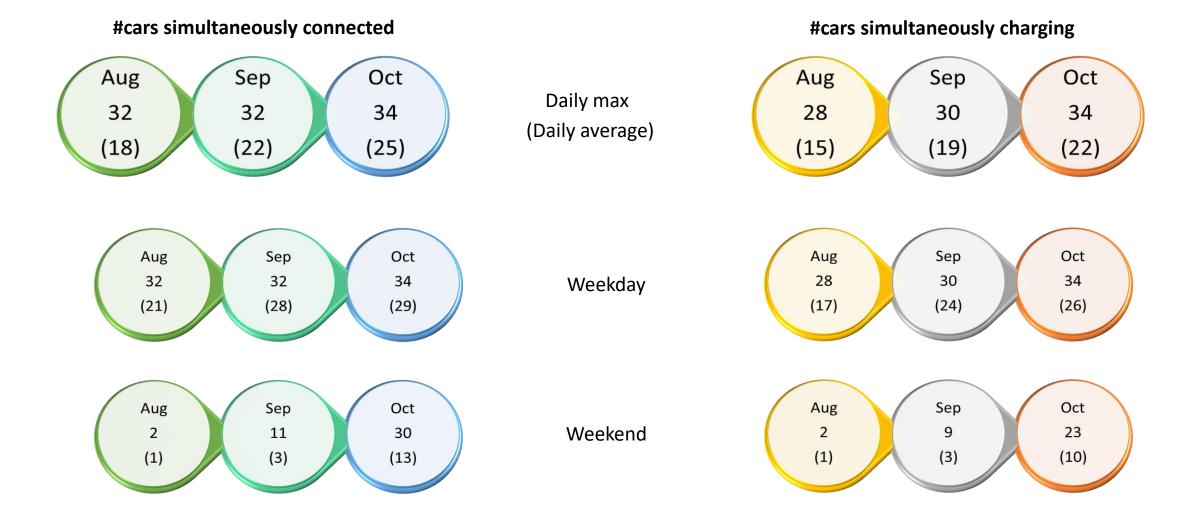
nextensa.	PHOENIX CONTACT NV/SA - Minervastraat 10-12 - B-1930 Zaventem-Keiberg II Tel. +32 2 723 96 11 - Fax +32 2 725 36 14 - www.phoenixcontact.be 2024 1041 Config MINT Parking Koninklijk Pakhuis			
PLACES YOU PREFER				
CONTACT	Creator Micheas Goethals	Company / Project Nextensa	Dete 14/06/2024	

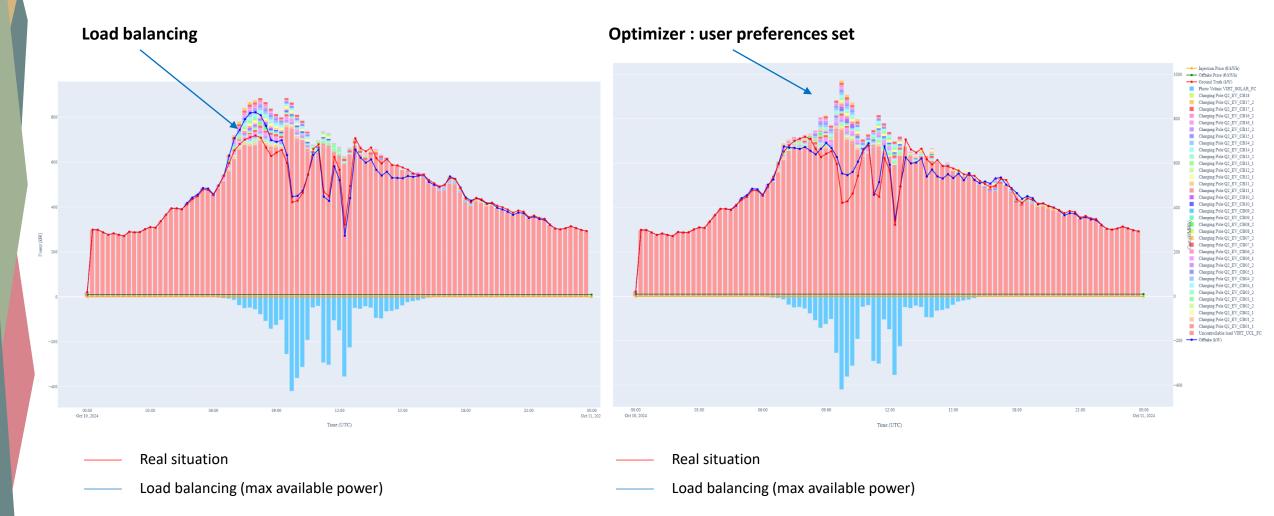



Tour & Taxis PoC: # Car sessions per day

HUME

Tour & Taxis PoC: # Users with charging preferences filled-in (QR code)




Tour & Taxis PoC: Simultaneous car sessions

HUME

charging Poles : 35

Tour & Taxis PoC: Facts & Figures

Financial benefit using the optimizer : Offtake **peak** reduction

Offtake peak (KW)	Load balancer Optimizer (with user preference					Optimizer (with user preferences)	Optimizer with user pref - Load balancer		
			kW	%	€ 2,5/kW		kW	%	€ 2,5/kW
Augustus	1156,38	1074,52	-81,86	-7,08%	-€ 204,65	1062,46	-93,93	-8,12%	-€ 234,81
September	1116,30	1013,95	-102,35	-9,17%	-€ 255,88	950,33	-165,98	-14,87%	-€ 414,96
October	971,86	888,62	-83,24	-8,57%	-€ 208,10	821,98	-149,88	-15,42%	-€ 374,71
Total			-267,45		-€ 668,63		-409,79		-€ 1.024,48

Tour & Taxis PoC: Findings & advices

- When the users (drivers) don't fill-in their session charging needs using the App (scan QR code) charging will be done at min power creating no flexibility.
 - Charging power: 6A
- Users (drivers) should get some kind of incentive to fill-in their charging needs and creating flexibility.
 - Flexible pricing, f.i. discount on charging cost, ..
 - Voucher : Free parking, drink, ...
- Benefit of cost reduction (lower peak limit) will increase with the amount of users using the app.
 - In this PoC: +/- 4.000€/year with an average of 5 users
- Promote charging in the weekend to improve self consumption & avoid injection to the grid
 - 100% usage by buildings (except weekend)

Tour & Taxis PoC: Findings & advices

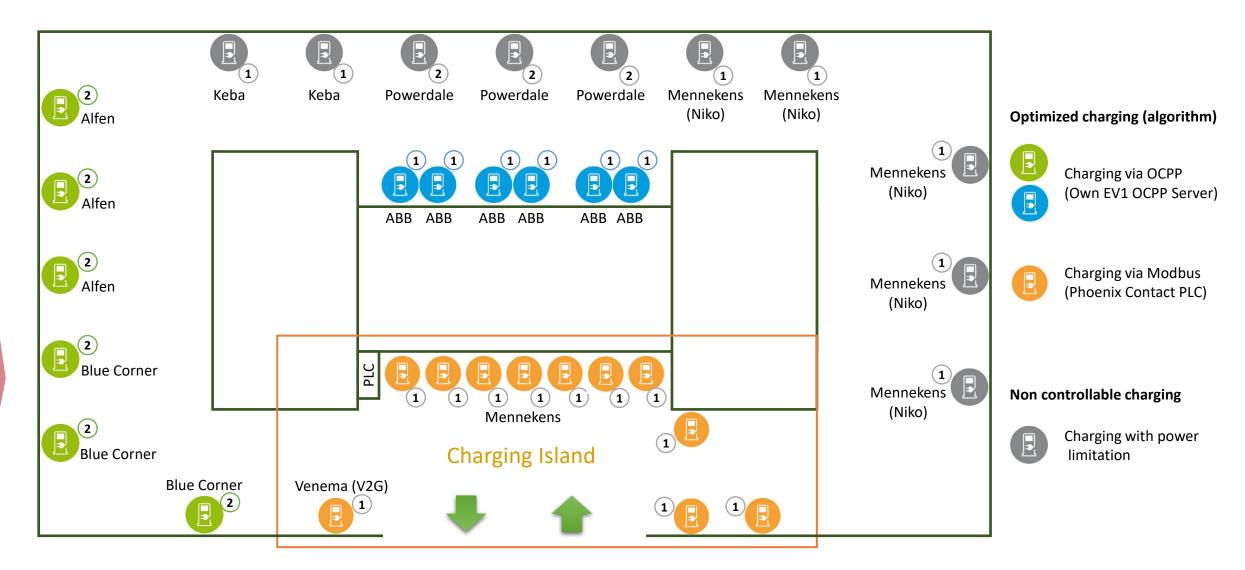
- Current parking contains 296 parking places with only 35 charging poles
 - Using the optimizer and users filling-in their charging needs the number of charging poles can be doubled without the need to increase the grid connection
- Using simulations different options can be calculated
 - Usage of day-ahead
 - Imbalance market
 - Extention of #charging poles
- Flexibility depends on the accurancy of the user preferences set : estimated departure time, km's to drive / requested energy to charge
 - Often overestimated -> loss off flexibility
 - OEM car data access will be benefical
- Fixed electricity price contract
 - No gain by shifting (f.i. day ahead)

WP5 : EnergyVille1 demonstration site

Dominic Ectors (VITO)

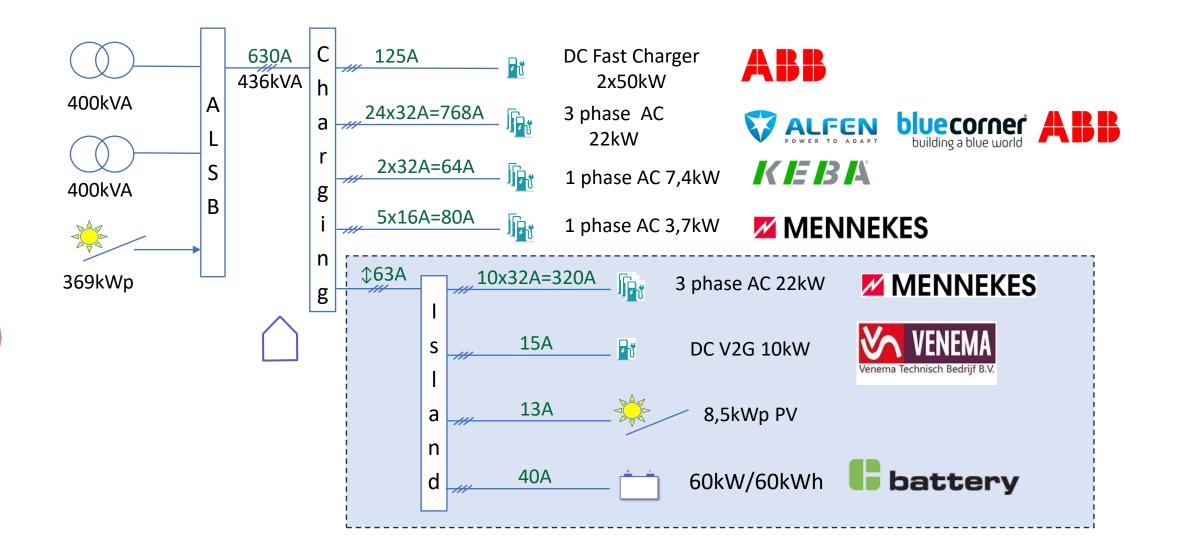
EnergyVille1

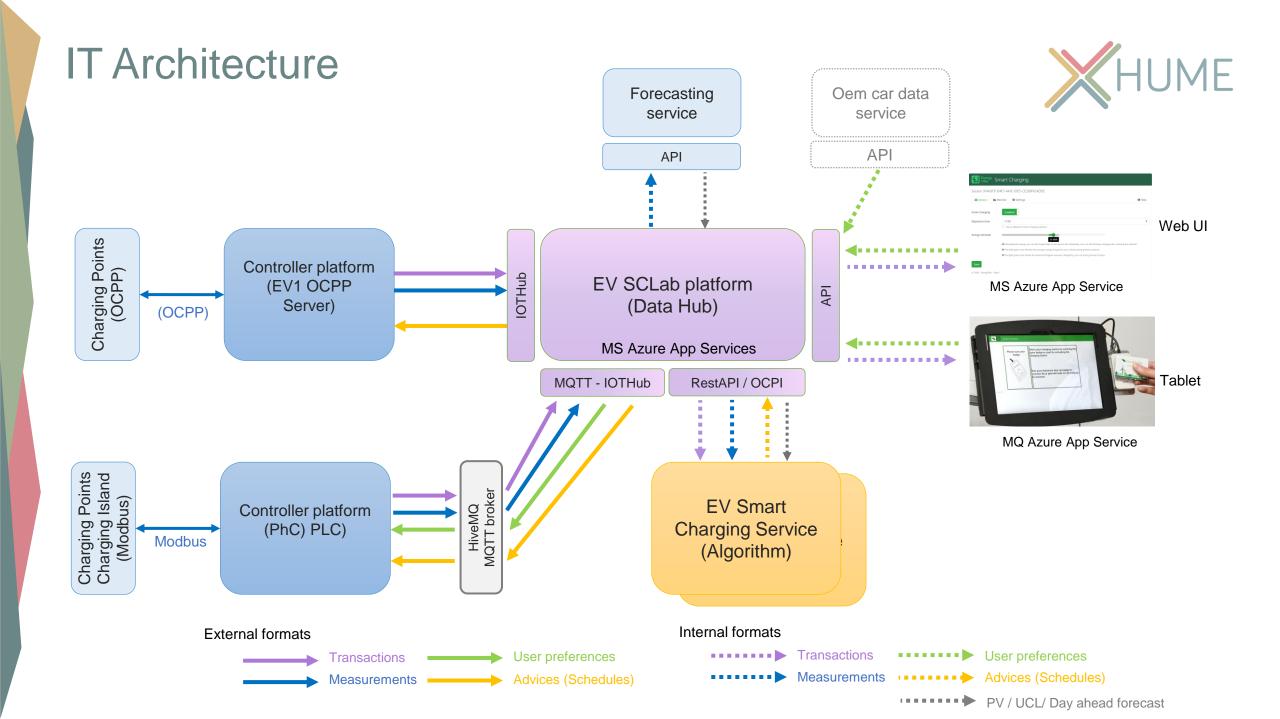
Lan


William and the second second

1. 101100

1


EnergyVille 1 demo site: Parking lay-out



Electrical diagram

EV1 Charging session: Mail

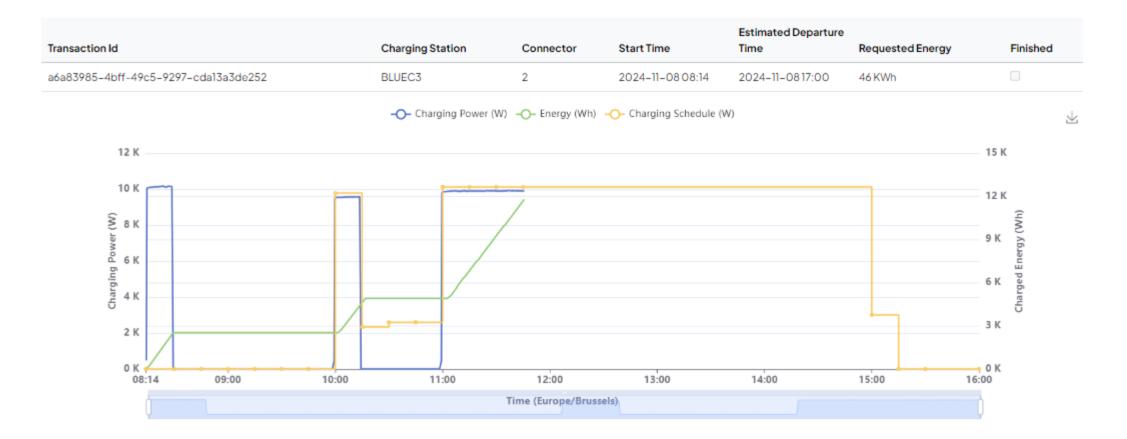
Hello,

You started a charging session on connector 1 of charge point "BLUEC3". Follow and manage your charging session online here.

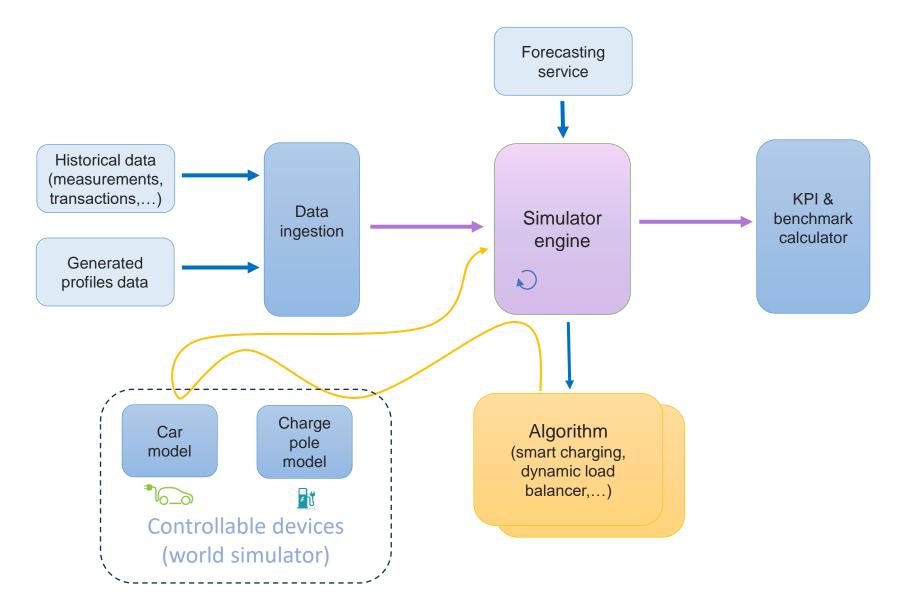
For additional help or questions, feel free to send us an email.

EV1 Charging session: Default settings

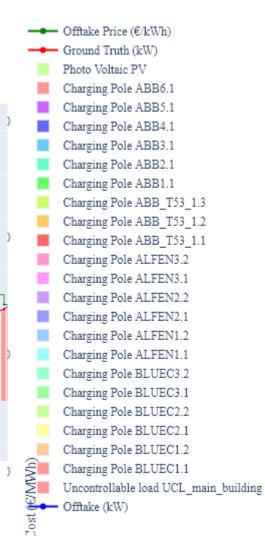
Departure date	Departure time	
08/11/2024		
	Use as default for future charging sessions	
Vehicle		
BMW iX xDrive40 (71 kWh)		
Requested energy		~
	Not set, Default: 25.183 kWh	~
Requested energy	Not set, Default: 25.183 kWh s us to improve the scheduling. Your car will still keep charging after receiving the estimate.	~
() Estimating the energy () The dark green zone denotes the average ene		~


EV1 Charging session: Transaction

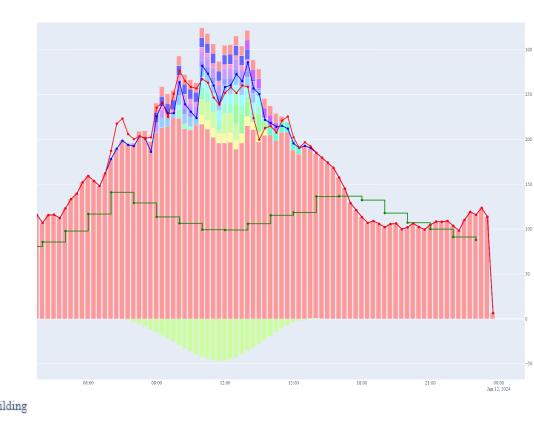
Departure date	Departure time
08/11/2024	
	Use as default for future charging sessions
/ehicle	
Opel Mokka-e (54 kWh)	~
Requested energy	-
	46 KWh
Estimating the energy your car will charge helps us to improve	e the scheduling. Your car will still keep charging after receiving the estimate.


EV1 Charging session: Monitoring

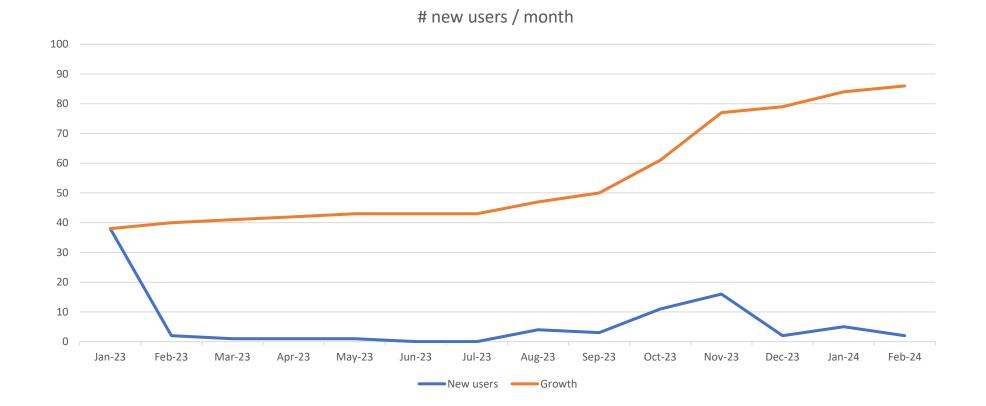
Simulator for benchmarking



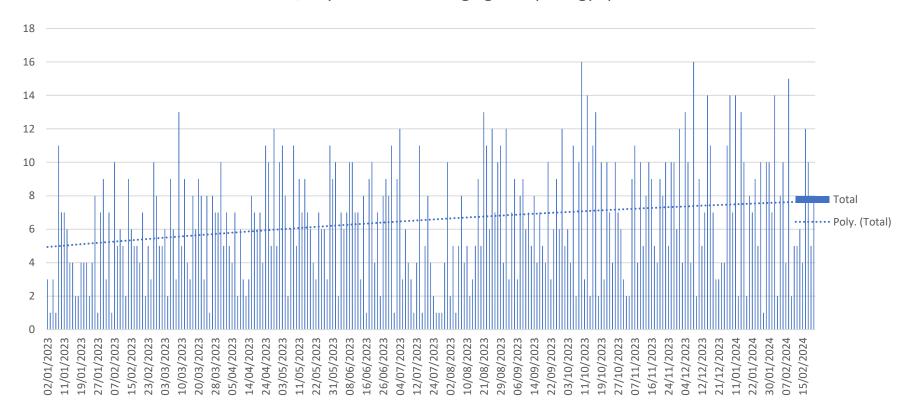
Results


00:00 Jan 11, 2024

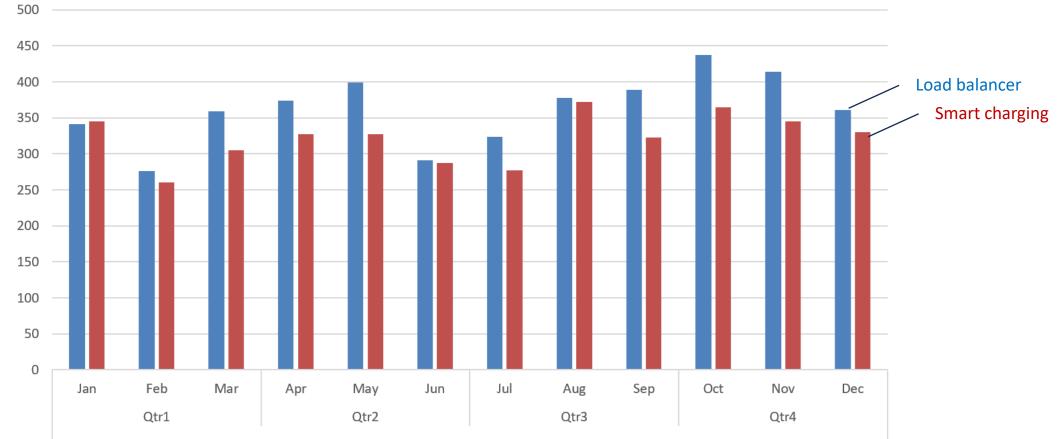
Load balancer



Optimizer with perfect forecast



Transactions / day



Transactions / day with Smart Charging & req energy specified

Performance results

Self-consumption	Dynamic load balancing	Smart charging
Self-consumption	97,4%	97,7%

Cost	Dynamic load balancing	Smart charging	Cost reduction	% cost reduction	Reduction part
Commodity cost	4.116,01€	3.657,95 €	458,06€	11,13%	19%
Peak cost	17.351,03 €	15.438,88€	1.912,15 €	11,02%	81%
Total cost	21.467,04 €	19.096,83€	2.370,21€	11,04%	

Total cost reduction per pole per month: 11€

Cost, complexity versus gains

Commercial flexibility not yet activated Additional comfort (priority, more charged,...)

Thank you

Dominic Ectors, VITO/EnergyVille

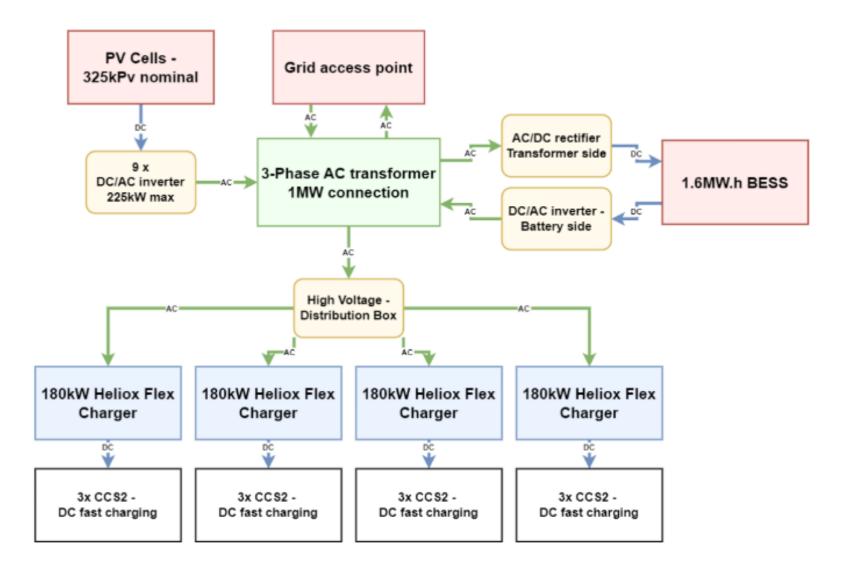
Multiobus - Setup

Overview depot Tienen

HUME

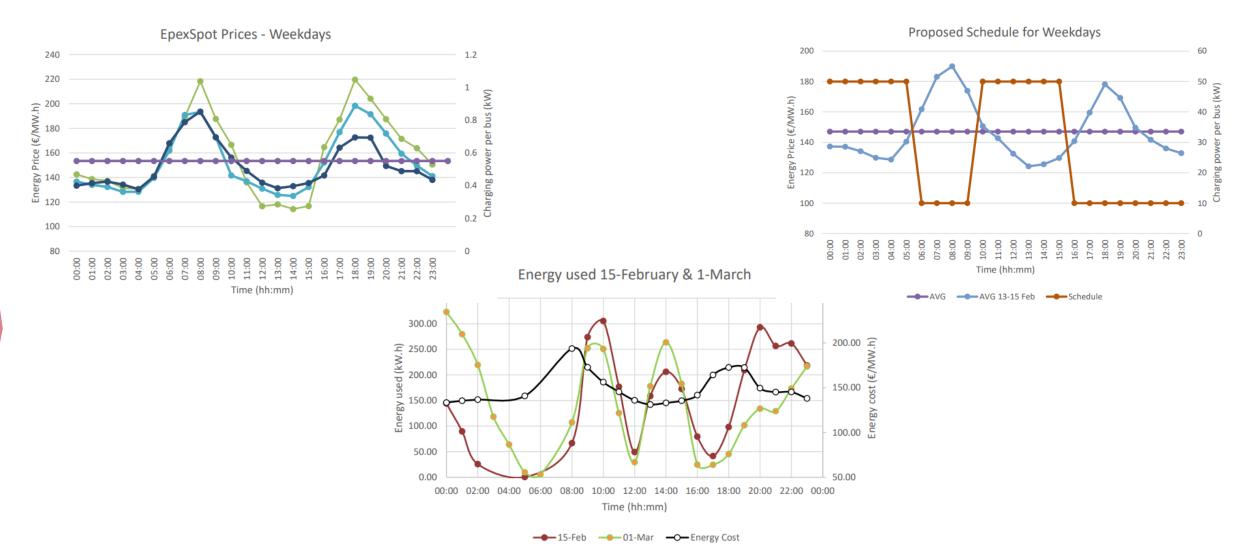
- Busdepot 2 hangars (North / South)
- Located in Industrial Zone
- Gridconnection: 1.000 kVA
- PV installation 800 solar panels
- BESS (1,6 MWh)
- Daily use of 2 MWh (2021-2023)

- Hangar for 24 buses,12 chargers available (CCS-2, 3 DC-outlets/180kW, dynamic charging)
- Nominal DC charging power of 50 kW, max performance 150 kW
- Charging and buses are monitored by Chargepoint[®] software
- PV installation and BESS (1,6 MWh) on site



Multiobus - Technical data

Overview depot Tienen



- Overview of bus fleet during test period
- Avg consumption 1.1 kWh/km (12 meter bus), 1.7 kWh/km (18 meter)

Nr. Buses	Bus Type	Battery Capacity (type)
4 x Ebusco 2.1	12-meter	211kW.h (LFP)
10 x Ebusco 2.2	12-meter	360kW.h (LFP)
2 x Ebusco 3.0	12-meter	390kW.h (LFP)
2 x Mercedes-Benz e-Citaro	18-meter (Articulated)	590kW.h (NMC)

• Prices vs charging needs (2023)

Planned maximum power (per set of 3 connected outlets per charger)

Groep	Laadstations		Geplande groepslimie	eten	Geplande start op afstand
Laadstation 1	3 laders	Bewerk	Actief	Bewerk	Inactief
T01-01 T05-01 T06-01			Dagdeel 1 🛛 🕑 (150 kW)	Mon, Tue, 09:45- Wed, Thu, 16:00 Fri	
			Dagdeel 2 🛛 🗸	Mon, Tue, 16:00- Wed, Thu, 23:45 Fri	
			Nachtdeel 🛛 🕑 1 (150 kW)	Sun, Mon, 00:00- Tue, Wed, 05:00 Thu, Fri, Sat	
			Ochtenddeel1 (15 kW)	Mon, Tue, 05:00- Wed, Thu, 09:45 Fri	
			Dagdeel Weekend (15 kW)	Sun, Sat 05:00- 23:45	

Further finetuning of the charging schedule:

 During split services in day time
 Further delayed charging at night
 Weekend charging with adapted schedule

Schedule	€/kW.h week	€/kW.h weekend	Improvement Week (%)	Improvement Weekend (%)
1	0.127	0.115	-	-
2	0.119	0.108	6.12	6.53
3	0.123	0.11	3.09	4.52
4	0.113	0.103	10.62	10.55

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO Carlo Mol)
 - \checkmark Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

HUME Closing Event – 14 November 2024 – Tour & Taxis (Brussels)

IEA HEV TCP Task49 - EV FIRE SAFETY

What is the impact of "EV Fire Safety" aspects on your parking and building

Carlo Mol – VITO / EnergyVille

Agenda

- Due to the unfortunate fire incident at the bus depot of Multiobus in October 2023, the HUME partners decided to add an extra presentation not directly linked to smart charging but on the topic of "EV Fire Safety" and its impact on the installation of extra charging points in parkings.
- An overview of the activities within Task49 on "EV Fire Safety" by Carlo Mol (VITO). VITO initiated a dedicated Task on "EV Fire Safety" within the framework of IEA HEV TCP and will give an overview of lessons learned related to changes in parking legislation in different EU member states.
- Practical hands-on experiences will be shared by bus depot owner Multiobus and building/parking owner Nextensa.

an de 24 bussen blijven enkel wat stalen frame's over. © Bolle

24 Lijnbussen en 700 zonnepanelen vernield na zware brand in loods

Brandweer kon voorkomen dat de brand oversloeg, maar de loods waar de brand uitbrak was niet meer te redden. © Bollen

International Cooperation on Hybrid & Electric Vehicles

Under the International Energy Agency Energy Technology Network

hevicp

International Energy Agency (IEA)

- IEA is an organization of 31 member countries focused on energy issues.
- Founded in 1974, based in Paris.
- IEA works to ensure reliable, affordable and clean energy.
- IEA has four main areas of focus:
 - energy security
 - economic development
 - environmental awareness
 - engagement worldwide.
- IEA has 39 different Technology Collaboration Programs (TCPs) focused on topics across many sectors, including buildings, transport, industry, renewable energy, fossil energy and fusion power
 - one of these is the Hybrid & Electric Vehicle TCP (HEV TCP)

IEAHEV.ORG

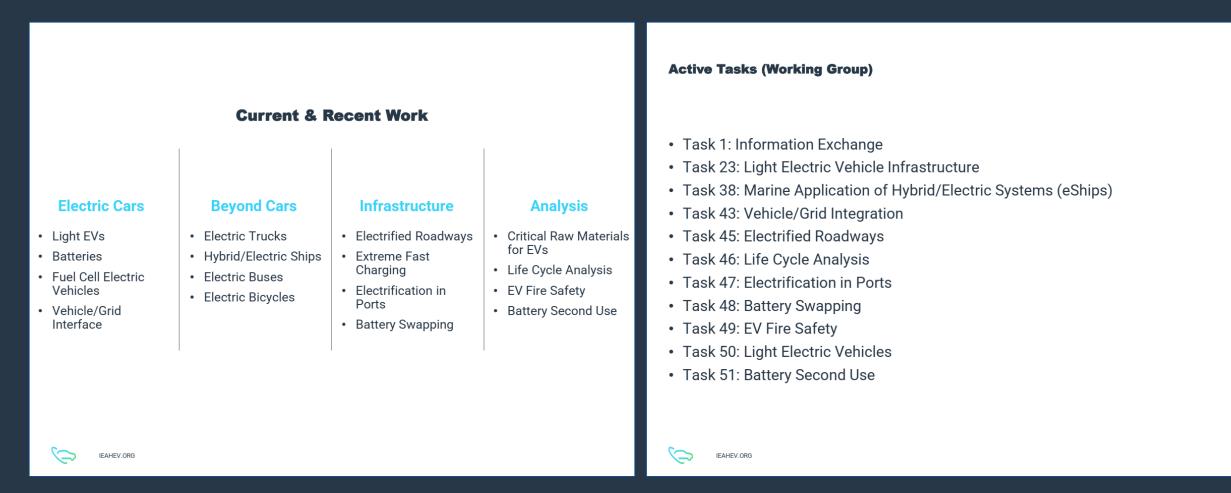
 $\langle \Box \rangle$

Hybrid & Electric Vehicle Technology Collaboration Program (HEV TCP)

- HEV TCP was formed in 1993; today it is a working group of 18 countries working together on electric drive vehicle technologies
- An Executive Committee (ExCo) directs the work of the task forces, plans new initiatives, and disseminates the information produced
- Countries participate in various task forces (working groups) on specific technologies of their choice

Information or material of the Technology Collaboration Programme (TCP) on Hybrid and Electric Vehicles (HEV TCP) (formally organized under the auspices of the Implementing Agreement for Co-operation on Hybrid and Electric Vehicle Technologies and Programmes), does not necessarily represent the views or policies of the IEA Secretariat or of the IEA's individual Member countries. The IEA does not make any representation or warranty (express or implied) in respect of such information (including as to its completeness, accuracy or non-infringement) and shall not be held liable for any use of, or reliance on, such information.

HEV TCP Participants


Executive Committee – 18 member countries

 \frown IEAHEV.ORG

Recently Completed Tasks

- Task 29: Electrified, Connected and Automated Vehicles (e-CAVs)
- Task 30: Environmental Effects of Electric Vehicles
- Task 31: Fuels and Energy Carriers for Transport
- Task 32: Small Electric Vehicles
- Task 33: Hybrid and Electric Buses
- Task 34: Battery Systems
- Task 35: Fuel Cell Electric Vehicles
- Task 36: Electric Vehicle Purchase and Use Patterns
- Task 37: Extreme Fast Charging
- Task 39: Interoperability of e-Mobility Services
- Task 40: Critical Raw Materials for EVs
- Task 41: Electric Freight Vehicles
- Task 42 Scaling Up EV Markets and EV City Casebook

Task 01 – Information Exchange

Task Manager: Urban Foresight (UK) Gary.mcrae@urbanforesight.org

Activities:

- Annual report
- Newsletter
- Website (www.ieahev.org)
- Information sharing workshops

IEAHEV.ORG

 \frown

IEAHEV.ORG

Task 23 – Light Electric Vehicle Parking and Charging Infrastructure

Task Manager: EnergyBus.org (Germany) hannes.neupert@energybus.org

Objectives:

- Document existing solutions
 for best practice
- Create turnkey guidelines
 for local governments
- Workshops for interested communities

Task 43 – Vehicle/Grid Integration

Task Managers: Cristina Corchero and Josh Eichman (Spain) ccorchero@irec.cat , jeichman@irec.cat

Objectives:

IEAHEV.ORG

- Analyze the challenges of the integration of electric vehicles into our electricity and transport system in order to improve economic and environmental performance
- Explore, identify and give answers to the gaps preventing the electric vehicles to be fully integrated in the electrical grid
- Improve the joint work between electric sector and mobility sector, which is a key point for the real energy transition

Task 49 - EV Fire Safety

Task Manager: VITO (Belgium)

Carlo Mol, carlo.mol@vito.be

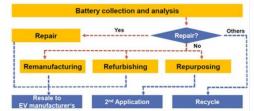
Objectives:

· Although there is growing interest in electric mobility from policymakers, companies and end-users, there is still some lack of trust in the safety aspects of electric vehicles. Task objective is to collect and share objective information on different EV fire safety related aspects to increase the overall trust in electric vehicles.

Objectives:

- · Collect statistics on EV fire incidents, since risk assessments based on limited statistics could lead to a too negative perception of EV fire safety risks hampering the roll-out out EV's and charging infrastructure in e.g. underground parking facilities.
- Stimulate knowledge exchange on EV fire safety aspects by sharing experiences between country experts to increase insights in EV fire safety risks and to share best practices in preventing or mitigating EV fire incidents (from both the technological and regulatory perspective).
- Target groups are building and parking owners, OEMs (vehicles and • charging infrastructure), fire rescue workers, transport and tow companies, insurance companies, policy makers, regulations, and up to the EV drivers and general public.

IEAHEV.ORG



Task 51 - EV Battery Re-Use

Task Manager: University of Ulsan (South Korea) Ock Taeck Lim, otlim@ulsan.ac.kr

Objectives:

- Explore EV battery re-use techniques and battery re-use initiatives
- Investigate technical issues for re-purposing EV batteries for new energy storage solutions
- Understand upcoming environmental regulations and safety standards for managing end-of-life batteries
- · Life cycle analysis (LCA) for environmental benefits of reuse

IEAHEV.ORG

Knowledge exchange on EV fire safety aspects: exchange best practices, share experiences and work towards common guidelines how to deal with specific EV fire safety risks

Task49 is triggered due to many different perceptions of EV fire safety risks

Not that much statistics available yet. Risk assessments based on limited statistics could lead to a too negative perception of EV fire safety risks hampering the roll-out out EV's and charging infrastructure in e.g. underground parkings

Task49 wants to collect and share information to relevant stakeholders: building and parking owners, fire rescue workers, transport and tow companies, insurance companies, OEMs (vehicles and charging infrastructure), policy makers, regulations, ... up to the EV drivers and general public

Sharing experiences between country experts to increase insights in EV fire safety risks and to share best practices in preventing or mitigating EV fire incidents (from technological and regulation perspective).

Task49 "EV Fire Safety" : Tasks

Task1: Collection of information

• Desktop research, interviews, conferences, ...

Task2: Stakeholders database

 Building up database of task49 working group (first point of contact & key members) & interested stakeholders in member countries

Task3: Collaboration IEA HEV TCP tasks

 Collaboration on their specific expertise e.g. on vehicle side (LEV, marine, ..), on batteries or charging infrastructure (extreme fast charging, battery swapping, ...), ... ambition is to intensify exchanges between IEA TCP HEV tasks (input for scoping, workshops, stakeholder database, literature, ...)

Task4: Workshops

• Organize 5 online workshops on selected topics, prioritization in agreement with member countries

Task5: Dissemination

• Task49 chapter in IEA TCP HEV annual reports, newsletters, conferences, ...

Task6: Task management

• 6-monthly meetings with FPOC of member countries (status update, planning, ...)

Task49 "EV Fire Safety": Task49 Member Countries

- 13 Member Countries
 - Belgium (Task Manager), Austria, Germany, Italy, Norway, South Korea, Spain, Switzerland, Sweden, The Netherlands, UK, USA and European Commission
- Close to join Task49
 - Denmark, Canada, Japan as observer (Link to IEA Combustion TCP)

• Next slides: Activities related to impact of "EV Fire Safety" aspects on parking and building regulation

Task49 "EV Fire Safety" : AEC2023 (Utrecht – NL) (27/09/2023)

11h00 - 12h00 Electrification of transport and Fire safety

In this session, representatives from fire fighting organisations, parking associations, electromobility associations and policymakers will take a look at the risks associated with EVs (especially when parked/charging in parking lots) and explain why the decarbonisation of road transport will be perfectly safe

Speakers

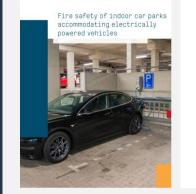
Raphaël Héliot - Moderator Policy Manager, AVERE

Aleksandra Klenke Policy officer, STF TF Fire safety - DG MOVE

Tom Antonissen Brussels representative, European Parking Association

Ron Galesloot Fire Department, City of Amsterdam

Tommy Borger Dutch City Council


Carlo Mol Vito

Task49 "EV Fire Safety"

Workshop 1: "Impact of electric vehicles on parking regulation" 17 July 2024 – ONLINE

- Welcome & introduction to IEA HEV TCP Task49 "EV Fire Safety" (Carlo Mol, VITO) (15')
- Impact of electric vehicles on parking regulation (15' for each presentation)
 - In Belgium (Bart Vanbever, Agoria and FireForum)
 - In The Netherlands (Tom Hessels, NIPV)
 - In Austria (Hannes Kern, IRIS)
 - In UK (Asiq Mohamed or Grace Carroll, UK Office for Zero Emission Vehicles)
 - On European level (Aleksandra Klenke DG MOVE & Eugenio Quintieri Fire Safe Europe, EC Sustainable Transport Forum Task Force Fire Safety)
- Q&A Interaction with speakers and participants on experiences and expectations (30')
- Recording and presentations of workshop 1: send email to <u>carlo.mol@vito.be</u> for link
- Next Workshop will be on "EV Fire Statistics"

Jonna Hynynen, Maria Quant, Roshni Pramanik, Ann Olofsson, Ying Zhen Li, Magnus Arvidson, Petra

SAFETY AND TRANSPOR

Task49 "EV Fire Safety" : Task1 : Collection of Information: Future Conferences

- European Fire Safety Week (18-22 November 2024 in Brussels)
- https://www.europeanfiresafetyalliance.org/european-fire-safety-week/

Dear Mr. Carlo Mol,

Thank you for signing up! We are looking forward to a productive week filled with an inspiring program and participation from delegates of EU institutions, fire safety professionals, researchers, and other key stakeholders. This broad and diverse group once again highlights the importance of our shared mission: improving fire safety.

Your registration overview:

In-Person Events

 Tuesday 19/11 - 2a. Workshop: Implementation of fire and electrical safety measures under the new EPBD. In-person from 09h30-12h30 (CET), Brussels

IEAHEV.ORG

Participation in the in-person events will be confirmed separately by the organizers within one week after receiving your registration, starting from October 1st. Information Center European Fire Safety Action Plan 🛛 News Upcoming Events About us Partners European Fire Safety Week

Home 18/11 19/11 20/11 21/11 22/11

European Fire Safety Week PROGRAM: Thursday November 21st

4a. Webinar: Overcoming the challenges with the fire safety of BEVs in Covered Car Parks: Guidelines and Best Practices | Online 10h00 - 11h30 (CET)

Register here

The rapid growth of EVs in Europe, driven by EU legislative frameworks, demands comprehensive fire safety guidelines for covered parking lots. This webinar will present existing and upcoming EU legislations governing the fire safety of EVs and recharging infrastructure in covered parking areas along with the challenges and best practices.

Task49 "EV Fire Safety" : Task1 : Collection of Information: Future Conferences

- International Conference on Fires in Vehicles (FIVE 2025) (7-8 April 2025 in Reykjavik Iceland)
- <u>https://www.ri.se/en/five</u> : registration will open in January 2025
- Presentation on IEA HEV TCP Task49: "Electric vehicle fire safety and the impact on parking regulations"
- Draft paper by 15/12/2024 and final paper by 03/03/2025

International Conference on Fires in Vehicles (FIVE 2025) 7-8 April, 2025, Reykjavik, Iceland

The Eight International Conference on Fires in Vehicles FIVE 2025 will be held April 7 - 8, 2025 in Reykjavik, Iceland.

RISE will host FIVE 2025 and ISTSS 2025 (International symposium on tunnel safety and security) during the same week (7-11 April, 2025). Read more about ISTSS here

In response to the pressing need for international dialogue RISE organise the conference FIVE (Fires in Vehicles). The objective of this conference is to exchange knowledge of fires in vehicles, including both on-road, offroad and rail vehicles. In recognition of the fact that many of the fire problems faced by these vehicles are the same, the solutions to them can also be similar.

FIVE brings together scientists, regulators, test engineers, rescue services, suppliers, manufacturers, operators, insurance companies and other organisations from the diverse field of transportation to discuss important fire issues.

We believe that this exchange of knowledge will significantly enhance economic, safe and sustainable solutions to problems in the fire area.

IEAHEV.ORG

Task49 "EV Fire Safety"

Task49 Member Countries

Contacts with other initiatives on passenger cars

- Close cooperation with EC STF TF Fire Safety: "Guidelines on fire safety for Battery Electric Vehicles parked in underground and above ground covered car parks" will be presented during European Fire Safety week (21 November 2024)
- DG REFORM Study "Accelerating Sustainable Mobility by Building Agile, Proportionate and Risk Based Safety Regulations and Scaling Up Carsharing in the Netherlands" – Deloitte
- CTIF (International Fire Service Association)
- EPA ARUP: Fire Safety Advice Toolbox will be launched soon

What about guidelines for heavy-duty vehicles and stationary batteries?

- Belgium new WG under FireForum on heavy-duty vehicles and guidelines for parking
- Belgium new ad-hoc group of stakeholders focusing on guidelines for stationary batteries implementation

Agenda

- Due to the unfortunate fire incident at the bus depot of Multiobus in October 2023, the HUME partners decided to add an extra presentation not directly linked to smart charging but on the topic of "EV Fire Safety" and its impact on the installation of extra charging points in parkings.
- An overview of the activities within Task49 on "EV Fire Safety" by Carlo Mol (VITO). VITO initiated a dedicated Task on "EV Fire Safety" within the framework of IEA HEV TCP and will give an overview of lessons learned related to changes in parking legislation in different EU member states.
- Practical hands-on experiences will be shared by bus depot owner Multiobus and building/parking owner Nextensa.

an de 24 bussen blijven enkel wat stalen frame's over. © Bolle

24 Lijnbussen en 700 zonnepanelen vernield na zware brand in loods

Brandweer kon voorkomen dat de brand oversloeg, maar de loods waar de brand uitbrak was niet meer te redden. © Bollen

Task49 "EV Fire Safety"

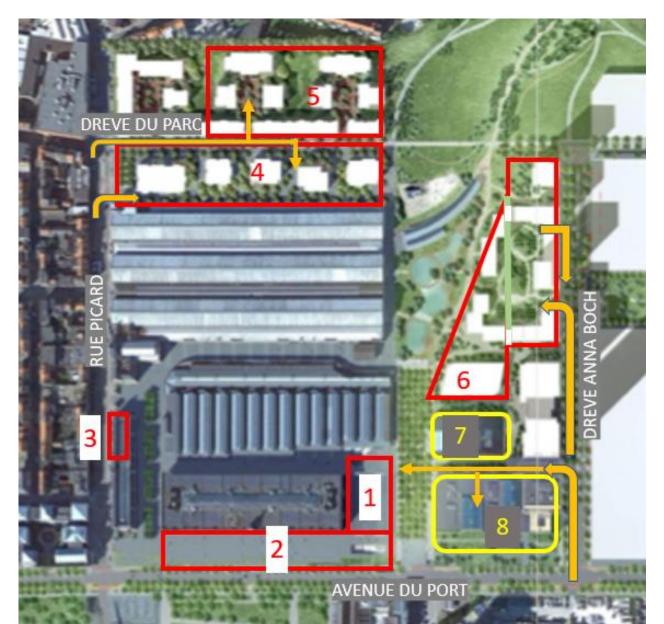
Contact Details: Task Manager

- Carlo Mol
- VITO / EnergyVille
- Thor Park 8300 | 3600 Genk (Belgium)
- Tel : +32 492 58 61 24
- Email : <u>carlo.mol@vito.be</u>
- www.vito.be & www.energyville.be
- https://ieahev.org/tasks/49/

Closing Event: 14/11/2024

Tour & Taxis EV Fire Safety

Tim Van Dorpe – Energy Manager



- Parking infrastructure @ Tour & Taxis
- Charging infrastructure @Tour & Taxis
- Extensions @ Esplanade & Park Lane I
- Fire department Brussels
 - Request for preliminary approval
 - Answer on request preliminary approval
 - Antecedents
 - Regulation
 - Description
 - Fire prevention measures already provided
 - Advice
 - Fire insurance company
- Environmental department Brussels
 - Regularization of the environmental permit
- Fire insurance company

Tour & Taxis: parking infrastructure

Nextensa:

1	Esplanade Wapenplein	2 Niv	354
2	Koninklijk Pakhuis	1 Niv	298
3	Hôtel des Douanes	1 Niv	13
4	Park Lane I	2 Niv	918
5	Park Lane II	1 Niv	256
6	Lake Side	2 Niv	627

Other:

- 7 Building Green One (Cofinimmo) 77
- 8 Herman Teirlinck (Vlaamse Overheid) 311

TOTAL : 2.854 pp

Tour & Taxis: charging infrastructure

Charging infrastructure T&T 2024

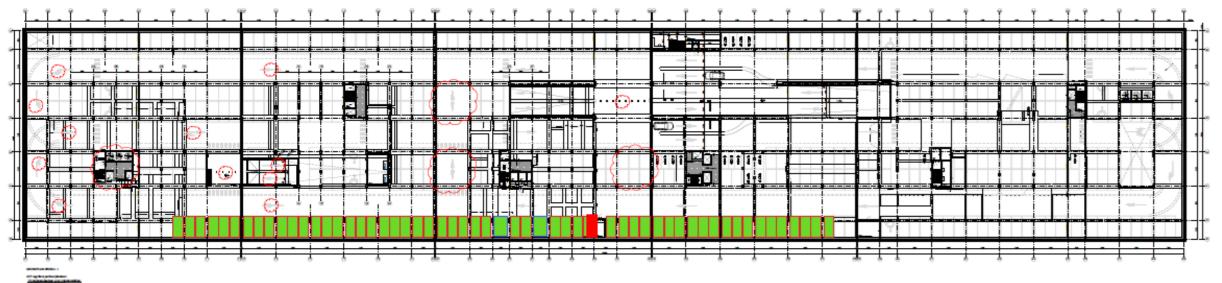
PARKING :		NIV	PLACES	CHARGING POINTS
1	Esplanade	2 Niv	354	14
2	2 Koninklijk Pakhuis	1 Niv	296	35
3	Hôtel des Douanes	1 Niv	13	2
4	Park Lane I	2 Niv	918	56
5	Park Lane II	1 Niv	256	0
6	Lake Side	2 Niv	627	design phase

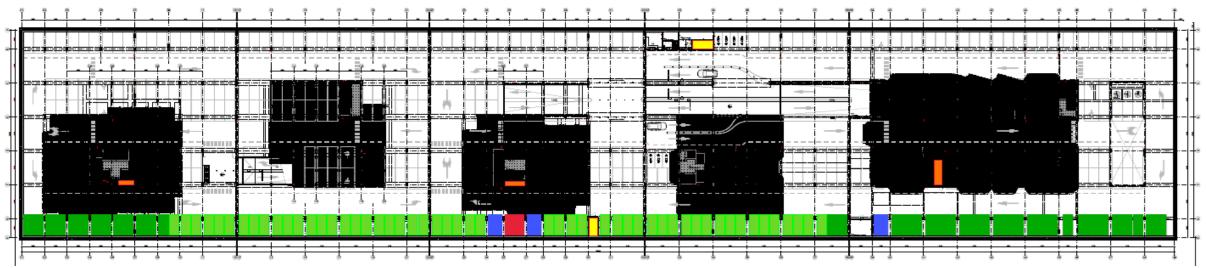
=> TOTAL: 123

=> TOTAL: 254

Charging infrastructure T&T 2025 (and later)

PARKING :		NIV	PLACES	CHARGING POINTS	EXTRA
1	Esplanade	2 Niv	354	54	=> +40
2	Koninklijk Pakhuis	1 Niv	296	70	=> +35
3	Hôtel des Douanes	1 Niv	13	13	=> +11
4	Park Lane I	2 Niv	918	96	=> +40
5	Park Lane II	1 Niv	256	15	=> +15
6	Maison De La Poste	0 Niv	6	6	=> +6
7	Lake Side	2 Niv	627	design phase	


Existing EV-installation in **Parking Esplanade**: 14 charging points on 250kVA transformer


Future EV-installation in Parking Esplanade: 54 charging points on a 1.000kVA transformer

Extensions @ Esplanade & Park Lane I XHUME

Existing EV-installation in Parking Park Lane I: 56 charging points on a 400kVA transformer

Future EV-installation in Parking Park Lane I 96 charging points on a 1.000kVA transformer

• Fire department Brussels

- Request for preliminary approval (aanvraag tot voorakkoord)
- Answer on request preliminary approval (antwoord op aanvraag voorakkoord)
 - Antecedents: Brandpreventieverslag van 30/05/2024 (Ref.:M.2007.1157/89) Brandpreventieverslag van 08/04/2024 (Ref.:M.2007.1157/88)
 - Regulation:
 A. Het gebouw waarvan de conventionele hoogte groter is dan 25 m (> 25 m), moet beantwoorden aan de technische specificaties opgenomen in de bijlagen 1, 4/1, 5/1 et 7 van het Koninklijk Besluit van 7 juli 1994 (gewijzigd door het Koninklijk Besluit van 20 mei 2022) tot vaststelling van de basisnormen voor de preventie van
 - brand en ontploffing waaraan de gebouwen moeten voldoen. Resluit van de Brusselse Hoofdstedelijke Regering van 25 februari 2021 tet vaststelling van
 - B. Besluit van de Brusselse Hoofdstedelijke Regering van 25 februari 2021 tot vaststelling van de algemene en bijzondere uitbatingsvoorwaarden van toepassing op parkings
 - C. Besluit van de Brusselse Hoofdstedelijke Regering van 29 september 2022 tot vaststelling van de verhouding van de oplaadpunten voor parkings evenals bepaalde bijkomende veiligheidsvoorwaarden die van toepassing zijn
 - D. De Regel van Goed Vakmanschap Elektrische Voertuigen in parkings (2° editie 02/10/2023) van Fireforum.
 - E. Algemeen Reglement voor de Arbeidsbescherming (ARAB) en de Codex over het Welzijn op het Werk, meer bepaald de titel 3 (brandpreventie op de arbeidsplaatsen) van boek III van de codex.
 - Description: Op de Tour & Taxis site te Brussel zijn parking Esplanade en Park Lane gelegen. Deze 2 parkings hebben momenteel respectievelijk 14 en 56 laadplaatsen en de wens is om dit uit te breiden naar respectievelijk 54 en 96. De elektrische voertuigen zullen telkens op het niveau -1 geplaatst worden. Er zullen hoogspanningsposten bijgeplaatst worden om de laadpalen te voeden.

• Fire department Brussels

- Request for preliminary approval (aanvraag tot voorakkoord)
- Answer on request preliminary approval (antwoord op aanvraag voorakkoord)
 - Fire prevention measures already provided:

De ondergrondse parkings zijn uitgerust met:

- een sprinklerinstallatie in parking Park Lane (parking Esplanade niet gesprinklerd)
- een RWA-installatie (Rook- en Warmte-Afvoer)
- een branddetectie
- signalisatie en veiligheidsverlichting
- brandblussers, muurhaspels en muurhydranten

• Advice: Is er voor deze uitbreidingen een vergunning nodig?

Antwoord van de brandweer: Het is Leefmilieu Brussel dat beslist of er al dan niet een (milieu)vergunning nodig is. Waarschijnlijk is dit vereist voor de hoogspanningsposten. Onze dienst zal enkel tussenkomen wanneer wij een aanvraag ontvangen van Leefmilieu Brussel. Bij vernieuwing van de milieuvergunning voor de parkings zal Leefmilieu Brussel ons sowieso uitnodigen om de parking te controleren.

Dient de brandweer deze uitbreiding te valideren?

Antwoord van de brandweer: Enkel wanneer wij een uitnodiging krijgen van Leefmilieu Brussel, zie hierboven.

Moeten er bijkomende (brand)veiligheidsmaatregelen getroffen worden in deze parkings?

Antwoord van de brandweer: Met de reeds genomen brandpreventiemaatregelen is het veiligheidsniveau waarschijnlijk voldoende. Wij raden u echter aan om een risicoanalyse uit te voeren volgens de *Regel van Goed Vakmanschap Elektrische Voertuigen in Parkings* (2e editie - 02/10/2023) van Fireforum.

- Environmental department Brussels
 - Regularization of the environmental permit

FORMULIER

Brussels Hoofdstedelijk Gewest

easyPermit-formulier

Aanvraag tot Wijziging van de Milieuvergunning

(artikelen 7bis en 64 van de <u>ordonnantie</u> van 5 juni 1997 betreffende de milieuvergunningen)

• Fire insurance company

• Different requirements per company

Wettelijk kader ontbreekt, dus voorlopig nog geen probleem voor ons, zolang het om een conforme installatie gaat van officiële laadpalen. (dus geen auto's ingeplugd in een 'conventioneel stopcontact').

Graag met aandacht voor de bereikbaarheid voor de brandweer. (liefst zo dicht mogelijk bij ingang/uitgang, indien mogelijk)

EV Fire Safety: a few insights

Peter Vicca - Multiobus

EV Safety - Compartmentation

- Compartmentation/separation of vehicles:
 - By means of uninterrupted walls (fire resistance typically >2 hours), fire resistant doors need to be used in case. Emergency exits if completely closed area's
 - 1 meter overdimensioned compared to the dimensions of the vehicles
 - By means of space between vehicles (typically 10 meters)
 - Quantity of vehicles per compartment depending on insured value
 - Water curtains on the market; effective?

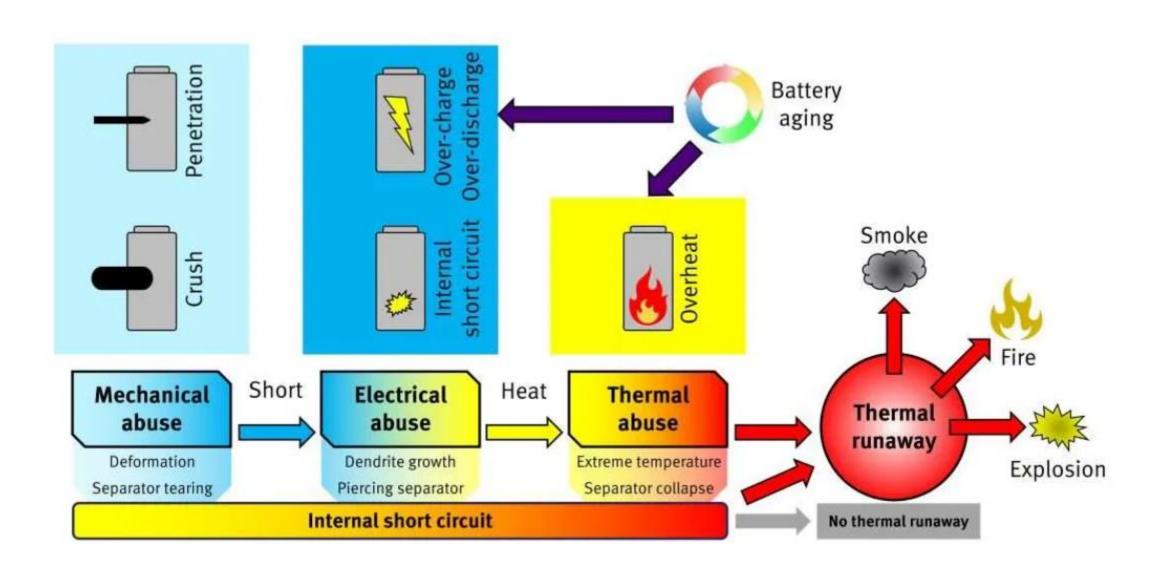
EV Safety – Fire suppression

- Sprinklers:
 - \odot Fast respons, water based, different types
 - Expensive (requires independent setup), maintenance
- Foam suppression:
 - Mainly used for fuel fires (avoiding oxygen supply)
- Water mist:
 - Effectively used in tunnels, but effectiveness in open depot setup?
 Expensive (see sprinkler)
- Powder:
 - Effective (ABC types of fires)
 - $_{\odot}$ Maintenance and collateral damage due to corrosive nature

• Fire extinguishers

- \circ Local, small fire
- Depending on human involvement, limited amount

EV Safety – Fire suppression

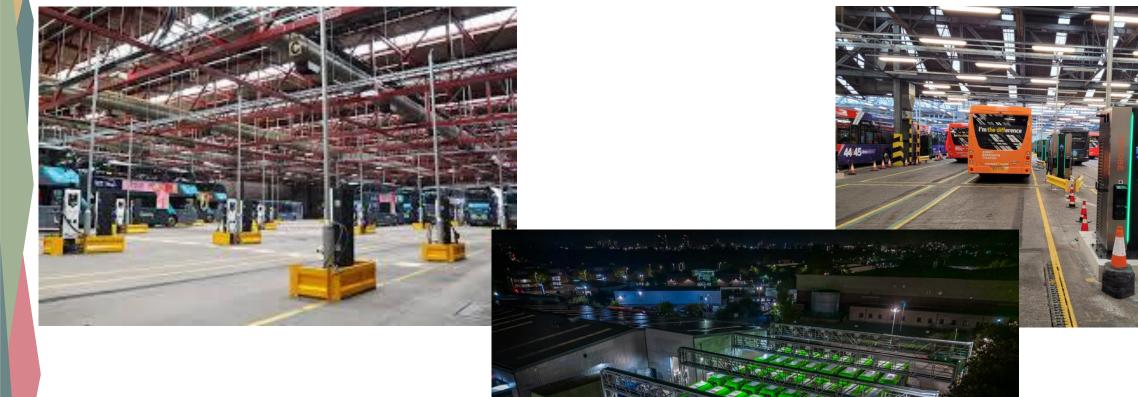

- Batteries commonly used in buses are NMC and LFP types:

 Normal fire: oxygen ignition fuel
 Battery fire: reduction oxidation reaction on the loose, highly exothermal
- Main cause for fire after damage (penetration), charging issues (although BMS should prevent this)
- NMC more susceptible to external damage
- LFP in casing can still explode when gas formation exceeds LEL

EV Safety – Fire suppression

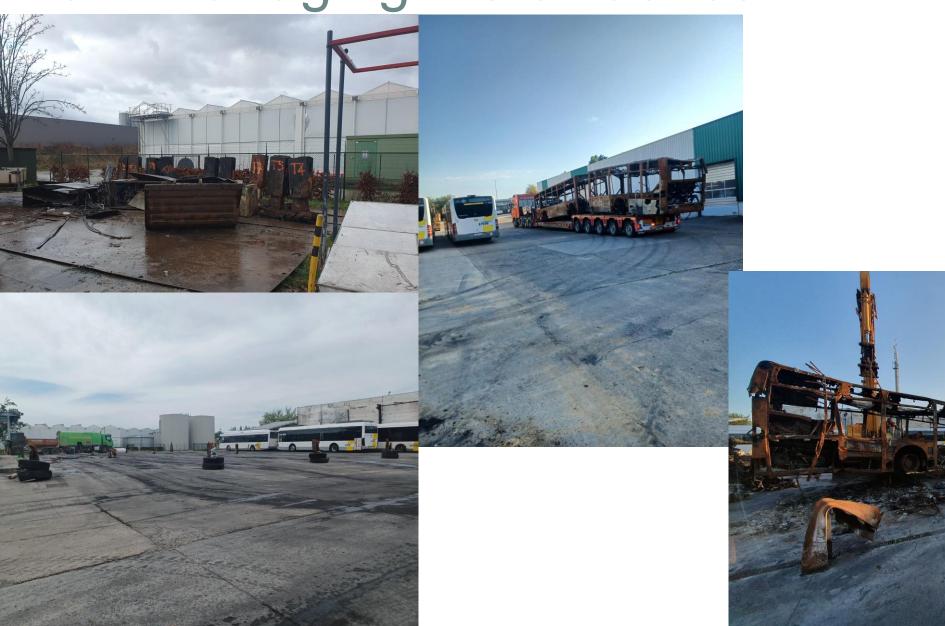
EV Safety – Fire detection

- Smoke detection:
 - \circ Optical (Photoelectric) or ionization
- Heat detection:
 - $_{\odot}$ Fixed temperature or Rate-of-rise heat detectors
- Flame detectors:
 - \odot IR, UV or combination of both
- Gas detection:
 - $_{\odot}$ Different types per detectable gas targeted
- Wired or wireless, connection with alarm station, camera monitoring combined, regulations (law or insurance), ... but all activated once the fire has started


EV Safety – Fire detection

- BMS as a safeguard and predicting fire potential
- BMS functions; cell voltage, current sensors, temperature sensors work together to balance module and pack.
- Temperature monitoring as a predictive value for fire safety; detection of early thermal runaway
 - \circ Cut-off charging process
 - \odot Disconnection of the battery pack
 - Warning through central alert system for quick response team
 - $_{\odot}$ Activation of fire suppression system in time
- Autonomous on-board telematic system through 4G/5G connection

Fire – the unwinding process



- Roles of authority during the fire
 - \circ Fire fighters, local authorities:
 - Safety of the perimeter, neighbourhood, environmental impact, ...
 - Police/department of justice:
 - Arson investigation (loss of environmental permit, start of forensic process)
 - Clearing activities can be started (consult with parties involved regarding removal)
 - Insurance investigation/expertise:
 - In agreement with all parties involved clearing of the premises, saving parts for investigation, contradictional investigation with all parties.
 - Involves site owner, insurance companies, constructors, bailiff, witness, ...
- Complete documentation (photographs, video's, witness reports, maintenancy history, inspection reports, ...) is mandatory

Fire – managing the evidence

Disclaimer: The information provided in this presentation is intended for informational purposes only and should not be considered as legal, professional, or regulatory advice. It may not reflect the latest developments or standards related to fire safety or (bus) depot setups. Always consult with a qualified professional or refer to relevant laws and regulations for authoritative guidance and compliance.

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- 🔨 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event

17h30-19h00: Reception & Networking

Moderator Prof. Johan Driesen – KULeuven / EnergyVille

Agenda

12u00-13u00: Registration & Sandwich Lunch

- ✓ 13u00-13u05: Welcome (VITO Carlo Mol Moderator)
- ✓ 13h05-13h15: HUME within the FLUX50 activities on collective energy solutions and flexibility (FLUX50 –Patrick Devos)
- ✓ 13u15-13u25: HUME measurement sites: challenges/opportunities (VITO Wim Cardinaels)
- ✓ 13u25-13u35: Charging ahead: Insights into EV driver behaviour and preferences (VITO Guillermo Borragán)
- 13u35-13u55: Using smart charging to optimize parking and building energy flows (KULeuven Klaas Thoelen & VITO Jef Verbeeck)
- ✓ 13u50-14u10: Looking deeper into the charging hardware: electrical systems and operating efficiencies (KULeuven Johan Driesen)
- ✓ 14u10-14u40: New insights in service and business models for EV charging (Blink Charging Thais Lopez & MOVE Jasmien Vanvooren)

15h00-15h30: Coffee Break

- ✓ 15h30-15h50: HUME integrated architecture (VITO Dominic Ectors)
- ✓ 15h50-16h30: An overview of the HUME demonstration sites
 - ✓ Tour & Taxis (Brussels) (Nextensa Tim Van Dorpe)
 - ✓ EnergyVille1 (Genk) (VITO Dominic Ectors)
 - ✓ Multiobus (Tienen) (Multiobus Peter Vicca)
- ✓ 16h30-17h00: What is the impact of "EV Fire Safety" aspects on your parking and building (VITO − Carlo Mol)
 - ✓ Practical hands-on experiences will be shared by bus depot owner Multiobus and parking owner Nextensa.
- ✓ 17h00-17h30: Q&A (KULeuven Prof. Johan Driesen)
 - Questions can be sent in during the event via a QR-code and will be handled in the Q&A session moderated by Prof. Johan Driesen (KULeuven)
 - \checkmark Presentations will be shared to all participants after the event
- 17h30-19h00: Reception & Networking

Closing Event - 14 November 2024 @ Tour & Taxis (Brussels) Hubs for Urban Mobility and renewable Energy

