

STORM - Smart Thermal Operational Resource Management

Somil Miglani, Product Owner, STORM Erik De Schutter, Business Development Thermal Energy Systems

Background information

 The STORM Controller was developed by VITO, Belgium as part of a H2020 project.

What is STORM?

 An artificial intelligence (AI) based controller for district heating networks which achieves operational optimization (OO) through active demand side management (DSM).

OO Potential

 Base load (Cheap): Waste, Biomass, Renewables, CHP

Peak load (Expensive): Oil,
Gas

Key idea

 Active demand side management utilizing flexibility offered by the buildings' thermal mass without loss in quality of service.

Duration	Potential reduction in peak load (%)
Short-term [1-3h]	40-50%
Medium-term [3-5h]	20-30%
Long-term [>5h]	10-12%

- 1. Without loss in thermal comfort ($\Delta T_{indoor} \approx 0.1^{\circ}C$ Order of magnitude)
- 2. Regardless of outdoor temperature (ODT)

On site implementation 1

COMPATIBILITY WITH EXISTING BMS'S

CLOUD BASED DATA PROCESSING AND VISUALIZATION PLATFORM

On site implementation 2

THE CLOUD

PLATFORM

Control strategies

Peak shaving

Electricity Market Interaction

Cell Balancing

Technical details

REAL TIME TRACKING COMMUNICTION OF & OPTIMIZATION **CONTROL SIGNALS**

DAY-AHEAD SCHEDULING & OPTIMIZATION

WIRELESS

Demonstrated technology

Proven benefits in numbers

ÆΔF

Reduction in power procurement 6%

11

STORM implementation steps

- Step 0: Feasibility assessment
- Step 1: Potential savings calculation (contract research)
- Based on commonly available input data
 - Hourly grid consumption
 - Hourly outdoor temperature
 - Monthly building energy consumption

We calculate potential annual cost and CO₂ emissions savings

STORM implementation steps

- Step 2: Reference data measurement/ Benchmarking (contract research)
 - Installation of IoT hardware in buildings
 - Measurement of data to characterize building flexibility
 - Training of AI for forecasting algorithms using production data
 - Evaluation of the controller
- Step 3: Operation (licence+support scheme)
 - STORM controller fully active
 - Evaluation, reporting and support
 - License scheme (optional: support)

Email: erik.deschutter@energyville.be mobile: +32 492 977 923, LinkedIn: https://www.linkedin.com/in/miglanis/

Further Information @ energyville.be/en/storm-controller

umec

somil.miglani@vito.be